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Phylogenetic Mixtures on a Single Tree Can Mimic a Tree of Another Topology
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Abstract.—Phylogenetic mixtures model the inhomogeneous molecular evolution commonly observed in data. The perfor-
mance of phylogenetic reconstruction methods where the underlying data are generated by a mixture model has stimulated
considerable recent debate. Much of the controversy stems from simulations of mixture model data on a given tree topology
for which reconstruction algorithms output a tree of a different topology; these findings were held up to show the short-
comings of particular tree reconstruction methods. In so doing, the underlying assumption was that mixture model data on
one topology can be distinguished from data evolved on an unmixed tree of another topology given enough data and the
"correct" method. Here we show that this assumption can be false. For biologists, our results imply that, for example, the
combined data from two genes whose phylogenetic trees differ only in terms of branch lengths can perfectly fit a tree of a
different topology. [Mixture model; model identifiability; phylogenetics; sequence evolution.]

It is now well known that molecular evolution is het-
erogeneous; i.e., that it varies across time and position
(Simon et al., 1996). A classic example is stems and loops
of ribosomal RNA: the evolution of one side of a stem is
strongly constrained to match the complementary side,
whereas for loops different constraints exist (Springer
and Douzery, 1996). Heterogeneous evolution between
genes is also widespread, where even the general fea-
tures of evolutionary history for neighboring genes may
differ wildly (Ochman et al., 2000). Presently it is not
uncommon to use concatenated sequence data from
many genes for phylogenetic inference (Phillips et al.,
2004), which can lead to very high levels of apparent
heterogeneity (Baldauf et al., 2000). Furthermore, em-
pirical evidence using the covarion model shows that
sometimes more subtle partitions of the data can ex-
ist, for which separate analysis is difficult (Wang et al.,
2007).

This heterogeneity is typically formulated as a mixture
model (Pagel and Meade, 2004). Mathematically, a phy-
logenetic mixture model is simply a weighted average of
site pattern frequencies derived from a number of phy-
logenetic trees, which may be of the same or different
topologies. Even though many phylogenetics programs
accept aligned sequences as input, the only data actually
used in the vast majority of phylogenetic algorithms are
the derived site pattern frequencies. Thus, in these algo-
rithms, any record of position is lost and heterogeneous
evolution appears identical to homogeneous evolution
under an appropriate phylogenetic mixture model. For
simplicity, we call a mixture of site pattern frequencies
from two trees (which may be of the same or different
topology) a mixture of two trees; when the two trees have
the same underlying topology, the mixture will be called
a mixture of branch length sets on a tree.

Mixture models have proven difficult for phylogenetic
reconstruction methods, which have historically sought
to find a single process explaining the data. For example,
it has been shown that mixtures of two different tree
topologies can mislead MCMC-based tree reconstruc-
tion (Mossel and Vigoda, 2005). It is also known that
there exist mixtures of branch length sets on one tree
that are indistinguishable from mixtures of branch length

sets on a tree of a different topology (Steel et al., 1994;
Stefankovic and Vigoda, 2007a, 2007b). Recently, simula-
tions of mixture models from "heterotachous" (changing
rates through time) evolution have been shown to cause
reconstruction methods to fail (Ruano-Rubio and Fares,
2007).

The motivation for our work is the observation that
both theory and simulations have shown that in certain
parameter regimes, phylogenetic reconstruction meth-
ods return a tree topology different from the one used to
generate the mixture data. The parameter regime in this
class of examples is similar to that shown in Figure 1,
with two neighboring pendant edges that alternate be-
ing long and short. After mixing and reconstruction,
these edges may no longer be adjacent on the recon-
structed tree. We call this mixed branch repulsion. This
phenomenon has been observed extensively in simula-
tion (Kolaczkowski and Thornton, 2004; Spencer et al.,
2005; Philippe et al., 2005; Gadakar and Kumar, 2005) and
it has been proved that certain distance and maximum
likelihood methods are susceptible to this effect (Chang,
1996, Stefankovic and Vigoda, 2007a, 2007b). Up to this
point such results have been interpreted as pathologi-
cal behavior of the reconstruction algorithms, which has
led to a heated debate about which reconstruction meth-
ods perform best in this situation (Steel, 2005; Thornton
and Kolaczkowski, 2005). Implicit in this debate is the as-
sumption that a mixture of trees on one topology gives
different site pattern frequencies than that of an unmixed
tree of a different topology. This leads to the natural ques-
tion of how similar these two site pattern frequencies
can be.

Here we demonstrate that mixtures of two sets of
branch lengths on a tree of one topology can exactly
mimic the different (expected) site pattern frequencies
of a tree of a different topology under the two-state sym-
metric model. In fact, there is a precisely characterizable
(codimension two) region of parameter space where such
mixtures exist. Consider two quartet trees of topology
12134, as shown in Figure 1. Label the pendant branches
1 through 4 according to the taxon labels, and label the in-
ternal edge with 5. The first branch length set will be writ-
ten t\,..., £5 and the second S\,..., S5. Now, if k\,..., k±
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FIGURE 1. Mixtures of two sets of branch lengths on a tree of a given
topology can give exactly the same expected site pattern frequencies as
a tree of a different topology under the two-state symmetric model. The
notation in the diagram showing x x T] + (1 — x) x T,' = T2 means that
the indicated mixture of the two branch lengths sets 7} and T[ shown in
the diagram gives the same expected site pattern frequencies as the tree
T2. The diagrams show two examples of this "mixed branch repulsion";
the general criteria for such mixtures is explained in the text. The branch
length scale in the diagrams is given by the line segment indicating the
length of a branch with 0.5 substitutions per site. Note that the mixing
weights in this example have been rounded.

satisfy the following system of inequalities,

k\ > k3 > k$ > 1 > k2,

l-k\l-kl 1 - k\ 1 - k\ ,

^2 + /c3 ,
x ^-^ > 1

1 + 1 + k2k3

then they specify a class of examples of mixed branch
repulsion. More precisely, then there exist nonzero in-
ternal branch lengths t$ and S5, mixing weights, and
positive numbers t\,..., l\ such that if for i = 1, . . . , 4,
k( = exp[—2(t( — Sj)] and U > lu the corresponding mix-
ture of two 12134 trees will have the same site pattern fre-
quencies as a single tree of the 13|24 topology. We have
illustrated two examples of branch length sets satisfying
these criteria in Figure 1 and provided the corresponding
branch lengths in Table 1.

TABLE 1. Rounded branch lengths for the examples in Figure 1.
The top division of the table is example (a); the bottom is example (b).
The top two lines in each example are the branch lengths forming the
mixture and the third line gives the branch lengths for the unmixed
tree.

Weight

0.748646
0.251354
1.

0.936064

0.063936

1.

Pendant 1

1.772261

0.25
0.888101

1.838398
0.2
1.011471

Pendant 2 Pendant 3

Example (a)
0.25 0.949306
1.353637 0.4

0.905792 0.648625
Example (b)

0.2 1.397309

0.543932 0.2

0.375718 0.794529

Pendant 4

0.846574

0.5
0.654236

0.411489

0.2
0.305338

Internal

0.366516
0.213387
0.086051

0.062429

0.055312

0.360827

The exact zone for mixed branch repulsion is described
above and detailed in Proposition 6; here we present
some simple necessary criteria for mixed branch repul-
sion to occur. First, note that except for the internal edge
and a (typically small) lower bound on pendant branch
lengths, the relevant parameters are differences of branch
lengths between sets rather than absolute branch lengths
themselves. Given two branch length sets with edges
numbered as above, let rf, denote the difference between
the branch lengths for edge z; i.e., t{ — s,. Then (perhaps
after changing the arbitrary numbering of the taxa) ei-
ther d\ > d3 > d\ > 0 > d2 or d\ > 0 > d3 > d$ > d2 must
be satisfied in order for mixed branch repulsion to occur.
Thus, for example, in one set of branch lengths the pen-
dant edge for taxa 1 should be long and the pendant
edge for taxa 2 should be short, whereas in the other set
of branch lengths these roles should be reversed. On the
other hand, the branch lengths for taxa 3 and 4 should
be both long for one set and both short for the other. Ad-
ditionally, at least one of the two internal branch lengths
needs to be relatively short. There are other more com-
plex criteria, but the above is necessary for exact mixed
branch repulsion to occur. However, as noted below, ex-
act mixed branch repulsion is not necessary to "fool"
model based methods.

We believe that this similarity between site pattern fre-
quencies generated by mixtures of branch lengths on
one tree and corresponding unmixed frequencies on a
different tree is what is leading to the mixed branch
repulsion observed in theory and simulation. Further-
more, it is possible that even the simple case presented
here is directly relevant to reconstructions from data.
First, it is not uncommon to simplify the genetic code
from the four standard bases to two (pyrimidines ver-
sus purines) in order to reduce the effect of composi-
tional bias when working with genome-scale data on
deep phylogenetic relationships (Phillips et al., 2004).
Second, when working on such relationships, concatena-
tion of genes is common (Baldauf et al., 2000), for which
a phylogenetic mixture is the expected result. Finally, the
region of parameter space bringing about mixed branch
repulsion may become more extensive as the number of
concatenated genes increases. Therefore, in concatenated
gene analysis, it may be worthwhile considering incon-
gruence in terms of branch lengths and not just in terms
of topology (Rokas et al., 2003; Jeffroy et al., 2006), as
highly incongruent branch lengths may produce artifac-
tual results upon concatenation. Other methods may be
useful in this setting, such as gene order data, gene pres-
ence/absence, or coalescent-based methods to infer the
most likely species tree from a collection of gene trees.

Mixed branch repulsion maybe more difficult to detect
than the usual model misspecification issues; in the cases
presented here, the misspecified single tree model fits
the data perfectly. In contrast, although using the wrong
mutation model for reconstruction using maximum like-
lihood can lead to incorrect tree topologies (Goremykin
et al., 2005), the resulting model misspecification can
be seen from a poor likelihood score. In the mixtures
presented here, there is no way of telling when one is
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FIGURE 2. Mixtures of two sets of branch lengths on a tree of a given topology can give exactly the same expected site pattern frequencies
as a tree of the same topology under the two-state symmetric model. The criterion for the occurrence of this phenomenon is explained in the
text and an example is shown in the figure. Note in particular that the branch lengths need not average: for example, the branch length for the
pendant edge leading to taxon 1 virtually disappears after mixing.

in the mixed regime on one topology or an unmixed
regime on another topology. Furthermore, any model
selection technique (including likelihood-ratio tests, the
Akaike information criterion, and the Bayesian Infor-
mation Criterion), which chooses a simple model given
equal likelihood scores, would, in this case, choose a sim-
ple unmixed model. Thereby it would select a tree that
is different from the historically correct tree if the true
process was generated by a mixture model.

The derivation of the zone resulting in mixed branch
repulsion is a conceptually simple application of two of
the pillars of theoretical phylogenetics: the Hadamard
transform and phylogenetic invariants (Hendy and
Penny, 1989; Semple and Steel, 2003; Felsenstein, 2004).
The Hadamard transform is a closed form invert-
ible transformation (expressed in terms of the discrete
Fourier transform) for gaining the expected site pattern
frequencies from the branch lengths and topology of
a tree or vice versa. Phylogenetic invariants character-
ize when a set of site pattern frequencies could be the
expected site pattern frequencies for a tree of a given
topology. They are identities in terms of the discrete
Fourier transform of the site pattern frequencies. There-
fore, to derive the above equations, we simply insert
the Hadamard formulae for the Fourier transform of
pattern probabilities into the phylogenetic invariants,
then check to make sure the resulting branch lengths are
positive.

Similar considerations lead to an understanding of
when it is possible to mix two branch length sets on a
tree to reproduce the site pattern frequencies of a tree
of the same topology (Proposition 3 of Appendix 1). For
a quartet, two cases are possible. First, a pair of neigh-
boring pendant branch lengths can be equal between the
two branch length sets of the mixture. Alternatively, the
sum of one pair of neighboring pendant branch lengths
and the difference of the other pair can be equal. For
trees larger than quartets, the allowable mixtures are de-
termined by these restrictions on the quartets (results to
appear elsewhere). For pairs of branch lengths satisfy-
ing these criteria, any choice of mixing weights will pro-
duce site pattern frequencies satisfying the phylogenetic
invariants.

Intuitively, one might expect that when two sets of
branch lengths mix to mimic a tree of the same topol-
ogy, some sort of averaging property would hold for the
branch lengths. This is true for pairwise distances in the
tree but need not be the case for individual branches, as

demonstrated by Figure 2. In fact, it is possible to mix two
sets of branch lengths on a tree to mimic a tree of the same
topology such that a resulting pendant branch length
is arbitrarily small whereas the corresponding branch
length in either of the branch length sets being mixed
stays above some arbitrarily large fixed value.

The results in this paper shed some light on the ge-
ometry of phylogenetic mixtures (Kim, 2000). As is well
known, the set of phylogenetic trees of a given topology
forms a compact subvariety of the space of site pattern
frequencies (Sturmfels and Sullivant, 2005). The first part
of our work demonstrates that there are pairs of points in
one such subvariety such that a line between those two
points intersects a distinct subvariety (Fig. 3). Therefore,
the convex hull of one subvariety has a region of inter-
section with distinct subvarieties. This is stronger than
the recently derived result by Stefankovic and Vigoda
(2007a, 2007b) that the convex hulls of the varieties in-
tersect. The second part of our work shows that there
exist pairs of points in a subvariety such that the line
between those points intersects the subvariety. Further-
more, it demonstrates that when such a line between two
points intersects the subvariety in a third point, then a
subinterval of the line is contained in the subvariety.

This geometric perspective can aid in understanding
practical problems of phylogenetic estimation. The ques-
tion of when maximum likelihood selects the "wrong"
topology given mixture data was initiated by Chang
(1996) who found a one-parameter space of such ex-
amples under the two-state symmetric (CFN) model.
Recently Stefankovic and Vigoda (2007a) found a two-
parameter space of such examples for the CFN model,
and a one-dimensional space of examples for the Jukes-
Cantor DNA (JC) and Kimura two- and three-parameter
(K2P, K3P) models. A potential criticism of these previ-
ous results is that because the set of examples has lower
dimension than the ambient parameter space, one is un-
likely to encounter them in practice.

However, a simple geometric argument can show that
the dimension of the set of all such pathological exam-
ples is equal to the dimension of the parameter space for
all four of these models. To see why this holds, we first
recall the definition of the Kullback-Leibler divergence of
probability distribution q from a second distribution p:
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FIGURE 3. A geometric depiction of the main result. The ambient space is a projection of the seven-dimensional probability simplex of site
pattern frequencies for trees on four leaves. The gray sheet is a subset of a two-dimensional subvariety of the site pattern frequencies for trees
of the 12|34 topology, whereas the black sheet is an analogous subset for the 13|24 topology. The horizontal line represents the possible mixtures
for the two sets of branch lengths for the 12|34 topology in Figure la. The fact that these two sets of branch lengths can mix to make a tree of
topology 13|24 is shown here by the fact that the horizontal line intersects the black sheet.

The p vector is typically thought of as a data vector and
the q vector is typically the model data. Maximum like-
lihood seeks to find the model data vector q which min-
imizes <$KL(/?/ *?)• Let V12134 be the set of all data vectors
that correspond exactly to trees of topology 12|34, and
similarly for Vi3|24- For V = V12|34 or Vi3|24, let 8KL(p, V)
denote the divergence of p from the "closest" point in
V; i.e., the minimum of <$KL(P/ f) where v ranges over
V. We show in Lemma 8 that this function exists and is
continuous across the set of probability vectors p with
all components positive.

Now, pick any of the above group-based models,
and let y be a corresponding pathological mixture
on 12134 for that model supplied by Theorem 2 of
Stefankovic and Vigoda (2007a). Maximum likelihood
chooses topology 13|24 over 12|34 for a data vector p ex-
actly when 8Ki{p, V13124) is less than SKL(P, V12134); there-
fore, <5KL(y, V13124) < SKL{y, Vi2|34)- By the properties of
continuous functions, this inequality also holds for all
probability vectors y' close to y that also have all com-
ponents positive. Therefore, ML will choose 13|24 over
12134 for all such y'. Because the transformation taking
branch length and mixing weight parameters to expected
site pattern frequencies is continuous, one can change
branch lengths and mixing weight arbitrarily by a small
amount and still have ML choose 13|24 for the resulting
data. This gives the required full-dimensional space of
examples.

We now indicate how our results fit into previous
work on identifiability and discuss prospects for gen-
eralization. For four-state models with extra symmetries
such as the Jukes-Cantor DNA model and the Kimura
two-parameter model, it is known that there exist lin-
ear phylogenetic invariants that imply identifiability of
the topology for mixture model data (Stefankovic and
Vigoda 2007a). The topology is also identifiable for phy-

logenetic mixtures in which each underlying process is
described by an infinite state model (Mossel and Steel,
2004, 2005)—such processes may be relevant to data in-
volving rare (homoplasy-free) genomic changes. There-
fore, the pathologies observed here could not occur for
those models. Furthermore, Allman and Rhodes (2006)
have shown generic identifiability (i.e., identifiability for
"almost all" parameter regimes) when the number of
states exceeds the number of mixture classes. As stated
above, the dimension of the set of examples presented
here is of dimension two less than the ambient space
(even though the conditions of the Allman and Rhodes
work is not satisfied). However, we note that even when
tree topology is generically identifiable (but not globally
identifiable) for some model, arguments similar to the
above can show that there exist positive-volume regions
where the data are closer to those from a tree of a different
topology than a tree of the same topology.

A related though distinct question concerns identifia-
bility under mixture models when the data partitions are
known. For example, we may have a number of indepen-
dent sequence data sets for the same set of taxa, perhaps
corresponding to different genes. In this setting it may be
reasonable to assume that the sequence sites within each
data set evolve under the same branch lengths (perhaps
subject to some i.i.d. rates-across-sites distribution), but
that the branch lengths between the data sets may vary.
The underlying tree topology may be the same or dif-
ferent across the data sets; however, let us first consider
the case where there is a common underlying topology.
In the case where each data set consists of sequences
of length 1 we are back in the setting of phylogenetic
mixtures considered above. However, for longer blocks
of sequences, we might hope to exploit the knowledge
that the sequences within each block have evolved un-
der a common mechanism. If the sequence length within
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any one data set becomes large, we will be able to infer
the underlying tree for that data set correctly, so the in-
teresting question is what happens when the data sets
provide only "mild" support for their particular recon-
structed tree. Assume that all (or nearly all) of the data
sets contain sufficiently many sites so that the tree recon-
struction method M positively favors the true tree over
any particular alternative tree. By this we mean that M
returns the true tree with a probability that is greater by
a factor of at least 1 + € (with € > 0) than the probabil-
ity that M returns each particular different tree. Then it
is easily shown that a majority-rule selection procedure
applied to the reconstructed trees across the k indepen-
dent data sets will correctly return the true underlying
tree topology with a probability that goes to 1 as k grows.
Note that this claim holds generally, not just for the two-
state symmetric model. Of course it is also possible that
the underlying tree may differ across data sets—in the
case of genes perhaps due to lineage sorting (Degnan
and Rosenberg, 2006)—in which case the reconstruction
question becomes more complex.

In a forthcoming article (Matsen et al., 2007), we fur-
ther investigate identifiability of mixture models. Using
geometric methods, we make some progress towards un-
derstanding how "common" nonidentifiable mixtures
should be for the symmetric and nonsymmetric two-
state models; for mixtures of many trees they appear to
be quite common. A new combinatorial theorem implies
identifiability for certain types of mixture models when
branch lengths are clock-like. A simple argument shows
identifiability for rates-across-sites models. We also in-
vestigate mixed branch repulsion for larger trees.

Many interesting questions remain. First of all, is exact
mixed branch repulsion an issue for any nontrivial model
on four states? Also, what is the zone of parameter space
for which a mixture of branch lengths on a tree is closer
(in some meaningful way) to the expected site pattern
frequencies of a tree of different topology than to those
for a tree of the original topology? How often does mixed
branch repulsion present itself given "random" branch
lengths? Considering the rapid pace of development in
this field, we do not expect these questions to be open
for long.
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APPENDIX 1

In this appendix we provide more precise statements and proofs of the
propositions in the text. The proofs will be presented in the reverse
order than they were stated in the main text—first the fact that it is
possible to mix two branch lengths on a tree to mimic a tree of the
same topology, then that it is possible to mix branch lengths to mimic
a tree of a distinct topology.

As stated in the main text, the general strategy of the proofs is simple:
use the Hadamard transform to calculate Fourier transforms of site pat-
tern probabilities and then insert these formulas into the phylogenetic
invariants. These steps would become very messy except for a number
of simplifications: First, because the discrete Fourier transform is lin-
ear, a transform of a mixture is simply a mixture of the corresponding
transforms. Second, the fact that the original trees satisfy a set of phy-
logenetic invariants reduces the complexity of the mixed invariants.
Finally, the product of the exponentials of the branch lengths appear
in all formulas, and division leads to a substantial simplification.

First, we remind the reader of the main tools and fix notation. Note
that for the entire paper we will be working with the two-state sym-
metric (also known as Cavender-Farris-Neyman) model.

The Hadamard Transform and Phylogenetic Invariants
For a given edge e of branch length y(e) we will denote

6{e) = exp[-2y(e)] (1)

which ranges between 0 and 1 for positive branch lengths. We call
this number the "fidelity" of the edge, as it quantifies the quality of
transmission of the ancestral state across the edge. For A c {1, . . . , n}
of even order, let qA = (H,,_i p)A be the Fourier transform of the split
probabilities, where Hn is the n by n Hadamard matrix (Semple and
Steel, 2003).

Quartet trees will be designated by their splits; i.e., 13|24 refers to a
quartet with taxa labeled 1 and 3 on one side of the quartet and taxa 2
and 4 on the other.

By the first identity in the proof of theorem 8.6.3 of Semple and Steel
(2003), one can express the Fourier transform of the split probabilities
in terms of products of fidelities. That is, for any subset A c {1, . . . , n}
of even order,

0(e) (2)
eeV(T,A)

where V(T, A) is the set of edges that lie in the set of edge-disjoint paths
connecting the taxa in A to each other. This set is uniquely defined
(again, see Semple and Steel, 2003).

From this equation, we can derive values for the fidelities from the
Fourier transforms of the split probabilities. In particular, it is simple
to write out the fidelity of a pendant edge on a quartet. For example,

A similar calculation leads to an analogous lemma for the internal
edge:

Lemma 2. The fidelity of the internal edge of an ab\cd quartet tree is

This paper will also make extensive use of the method of phy-
logenetic invariants. These are polynomial identities in the Fourier
transform of the split probabilities that are satisfied for a given tree
topology. Invariants are understood in a very general setting (see
Sturmfels and Sullivant, 2005); however, here we only require invari-
ants for the simplest case: a quartet tree with the two-state symmetric
model. In particular, for the quartet tree ab\cd, the two phylogenetic
invariants are

qc<t = o

qbc = o.

(3)

(4)

A <7-vector mimics the Fourier transforms of site pattern frequencies of
a nontrivial tree exactly when they satisfy the phylogenetic invariants
and have corresponding edge fidelities (given by Lemmas 1 and 2)
between 0 and 1.

This paper is primarily concerned with the following situation: a
mixture of two sets of branch lengths on a quartet tree that mimics
the site pattern frequencies of an unmixed tree. We fix the following
notation: the two branch length sets will be called f, and s,, the corre-
sponding fidelities will be called 0, and fa, and the Fourier transforms
of the site pattern frequencies will be labeled with q and r, respectively.
The internal edge of the quartet will carry the label i = 5, and the pen-
dant edges are labeled according to their terminal taxa (e.g., i = 2 is
the edge terminating in the second taxon). The mixing weight will be
written a, and we make the convention that the mixture will take the
tj branch length set with probability a time and s,- with probability
1-a .

Mixtures Mimicking a Tree of the Same Topology
In this section we describe conditions on mixtures such that a nontriv-

ial mixture of two branch lengths on 12J34 can give the same probability
distribution as a single tree of the same topology.

Mixing two branch length sets on a 12|34 quartet tree with the above
notation leads to the following form of Invariant (3) for a resulting tree
also of topology 12|34:

(5)
(a + 1 - a)[a qxlM + (l-

-[a qn + (1 - a) rn][a q^+(l - a) rM] = 0.

Multiplying out terms then collecting, there will be a a2(q^2M — <7i2<?34)
term, which is 0 by the phylogenetic invariants for the 12|34 topology.
Similarly, the terms with (1 - a)2 vanish. Dividing by a (1 — a), which
we assume to be nonzero, Equation (5) becomes

0,0504 X

for a tree of topology 12|34. In general, we have the following lemma:

Lemma 1. If a, b, and c are distinct pendant edge labels on a quartet such
that a and b ore adjacent, then the fidelity of a pendant edge a is

<?1234

Applying Invariant (3) for the 12|34 topology and simplifying leads to
the following equivalent form of (5):

(<?n - ri2)0?34 - rM) = 0. (6)

The same sorts of moves lead to the second invariant of the mixed tree:

= 0. (7)
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The fact that a doesn't appear in these equations already delivers an
interesting fact: if a mixture of two branch lengths in this setting satisfy
the phylogenetic invariants for a single a, then they do so for all a.
Geometrically, this means if the line between two points on the subva-
riety cut out by the phylogenetic invariants intersects the subvariety
nontrivially, then it sits entirely in the subvariety.

We can gain more insight by considering these equations in terms
of fidelities. Direct substitution using (2) into (6) gives

(0,02-^X0304- ^ 4 ) = 0.

This equation will be satisfied exactly when the branch lengths satisfy

*i + h = Si + s2 or t3 + fc, = s3 + s4. (8)

The corresponding substitution into (7) and then division by
3^4 gives, after simplification,

Now, because again the Fourier transform of a mixture is the mixture
of the Fourier transform, using Lemma 1 and simplifying gives

= 0

This equation will be satisfied exactly when the branch lengths satisfy

f, - t2 = s, - s2 or t3 - fc, = s3 - s4. (9)

To summarize,

Proposition 3. The mixture of two 12|34 quartet trees with pendant branch
lengths tj and s,- satisfies the 12|34 phylogenetic invariants for the binary
symmetric model exactly (up to renumbering) when either fi = Si and t2 = s2/

or ti + t2 = S\ + s2 and t3 — tA = s3 - s4.

As described above this proposition makes no reference to the mix-
ing weight a.

In quartets where t\ = S\ and t2 = s2, the resulting tree will also have
pendant branch lengths f, and t2:

Proposition 4. A mixture of two 12|34 quartet trees with branch lengths U
and Si which satisfies t\ = s, and t2 = s2 will have resulting pendant branch
lengths for the first and second taxa equal to ti and t2, respectively.

Proof. Let the fidelity of the edges leading to taxon one and two be
denoted Mi and /x2. We have by Lemma 1 with a = 1, b = 2 and c = 3,

AM =

This fraction is equal to 6\ after substituting \fr\ = 8\ and xj/2 = 02, which
are implied by the hypothesis. The same calculation implies that \i2 —
02 .

In the rest of this section we note that anomalous branch lengths can
emerge from mixtures of trees mimicking a tree of the same topology.

Proposit ion 5. It is possible to mix two sets of branch lengths on a tree to
mimic a tree of the same topology such that one resulting pendant branch
length is arbitrarily small while the corresponding branch length in either of
the branch length sets being mixed stays above some arbitrarily large fixed
value.

Proof. To get such an a n o m a l o u s mix ture , set 0] = x(r-i,63 = \j/3,04 = y^,
02 = \j/5t05 = \j/2, and a = .5. Equa t ions (8) a n d (9) are satisfied because
03 = \/r3 a n d 04 = i/r4, a n d therefore £3 = s3 a n d tA = s4. This impl ies that
the mixture will indeed satisfy the phylogenetic invariants.

01102 +051
(10)

Now note that by making the ratio 02/05 small, it is possible to have
IX\ be close to 1, although 0, can be small. This setting corresponds (via
(1)) to the case of the first branch length of the resulting tree to be going
to 0, although the trees used to make the mixture may have long first
branch lengths. It can be checked by calculations analogous to (10) that
the other fidelities of the tree resulting from mixing will be, in order,
V0205/ 03/ 04/ V0205- These are clearly strictly between 0 and 1, so the
resulting tree will have positive branch lengths.

Mixtures Mimicking a Tree of a Different Topology
In this section we answer the question of what branch lengths on a

quartet can mix to mimic a quartet of a different topology.

Proposition 6. Let fclr..., /c4 satisfy the following inequalities:

ki > k3 > k4 > 1 > k2 > 0,

1 - Jtf 1 - k\ 1 - k\ 1 - k\

K\

l+k2k3

> 0,

> 1.

(11)

(12)

(13)

Then there exists 7r5 such that for any n5 < k5 < n5
1 sufficiently close to

either n5 or n^ there exists a mixing weight such that for any tu ..., t5

and Si, . . . , s5 satisfying n5 = exp(—2(t5 + s5)) and kt = exp (—2(t,- — s,))
for i = 1 , . . . , 5, the corresponding mixture of two 12|34 trees will satisfy the
phylogenetic invariants for a single tree of the 13|24 topology. The resulting
internal branch length is guaranteed to be positive, and the pendant branch
lengths will be positive as long as the pendant branch lengths being mixed are
sufficiently large.

Proof. Let m denote the Fourier transform vector of the site pattern
frequencies of the mixture. The invariants for a tree of topology 13|24
are (by (3) and (4))

^1234 - '«13'«24 = 0

= 0.

(14)

(15)

As before, we insert the mixture of the Fourier transforms of the
pattern frequencies into the invariants. For the first invariant,

(a + 1 - a)[a qU3A + (l-a) r1234]

-[a <7,3 + (1 - a) rn][a <724+(l - a) r24] = 0.

Multiplying, this is equivalent to

(16)

+ (1 - a)2(r1234 - rnru) = 0.

A similar calculation with the second invariant leads to

+ rnq34 -

+ (1 - a)2(r12r34 - rur23) = 0.

(17)
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Rather than (16) and (17) themselves, we can take (16) and the dif- Assign variables A, B, and C in the standard way such that (22) can
ference of (16) and (17). Because the q and r vectors come from a tree be written Ap1 + Bp + C. The A and C terms are strictly positive, thus
with topology 12|34, they satisfy 41234 = qnq^ and 413924 = <7i4<?23 arid the existence of a 0 < p < 00 satisfying this equation implies
the equivalent equations for the r. Thus the difference of (16) and (17)
can be simplified to (assuming «(1 - «) * 0) fl < Q ̂  g 2 _ 4 A C > Q (27 )

<7i234 + r,234 - (<7i2>34 + r ^ w ) O n t h e o t h e r h a n d^ (27 ) implies the existence of a 0 < p < oo satisfying

Note that using (25), B < 0 is equivalent to

We would like to ensure that the tree coming from the mixture has
nonzero internal branch length. By Lemma 2 this is equivalent to show- _ X1234 — X12 < Q
ing that 1234 X13 - Xu

mn m24 > m14 m23. (19) Multiplying by X13 - Xi4, which is positive by (24), this equation is
equivalent to

Substituting in for the mixture fidelities and simplifying results in
X12X13 < X1234X14 (28)

?14?23)

which by a short calculation is equivalent to (12). The conclusion then
+ a(l - a)[qX3r2i + r13^24 - (<? 14̂ 23 + ^ u ^ ) ] is that the existence of a p > 0 satisfying (22) is equivalent to (12) and

2 B2 — AAC > 0 given the rest of the invariants.
+ ( ! - « ) (Wii - '"i4<?23) > 0. NO W / (24) a n d (28) imply that X12 < Xi234- Therefore, according to

(25), the product 65\lr5 is greater than 0, given (24). For convenience,
The first and last terms of this expression vanish because the q and s e t *s = ̂ 5, which as described is determined by ku ..., k*. Now, 65

r satisfy the 12|34 phylogenetic invariants coming from (3) and (4). b e i n g l e s s t h a n 1 a n d ^5 being less than 1 are equivalent to
Simplifying leads to

7T5 < fc5 <7r5~
1. (29)

Wi* + rnq2i > qur23 + r^qn. (20)
In summary, the problem of finding branch lengths and a mixing pa-

Define it, = fi/9j for i = 1 , . . . , 5 and p = a /( l - a). Note that rameter such that the derived variables satisfy (14), (15), and (19) is
equivalent to finding Jt, and 6{ satisfying (12), (13), (21), (24), (25), (29),

0<el< min (* r \ 1) and 0 < *, < 00 (21) a n d * " *AC > °' w h i c h C a n b e W d t t e n

is equivalent to 0 < ft < 1 and 0 < ^ < 1. Define {*™ ~ ">*»? " 4 ( 1 ~ ^ W " " ^ n * - D > 0. (30)

Note that X1234 = 5̂X13 is impossible using (23) and (28). Therefore, (30)
X12 = k\k2 + k3kA x« = M 3 + ^ 4 c a n b e satisfied while fixing the other variables by taking k5 close to ns

Xu=klki + k2k3 Xn34 = l + kik2k3k4. or Trf1 while satisfying (29).
Now we show that (possibly after relabeling) Equation (11) is equiv-

alent to (24) in the presence of the other inequalities. Recall that the x
Later we will make use of the fact that the x are invariant under the a r e m v a r i a n t ^ ^ m e a c t i o n o f t h e j a e i n g r o u p a c t i n g o n t h e m d i c e s

action of the Klein 4 group 7 , w ON of it,. Because the invariants are equivalent to equations that can be
Using these definitions direct substitution using (2) into (16), (18), e x p r e s s e d m t e r m s o f t h e w i t h e a n d ^ w e c a n a s s u m e t h a t k > k

and (20) and some simplification shows that the set of equations a n d ^ > h b y r e numbering via an element of the Klein group.
Now, subtract X12X14 from (28) to find

P2(l ~ O5) + PiXim -
, / , ,2\( I N n ^ ' Xn(Xi3 - Xu) < (X1234 - Xu)Xi4-

+ (1 - ^5^X1234 - 1) = U

X1234 - X12 = d5f5(x\3 - Xu) (23) Rearranging (26), it is clear that this implies that

X13 > Xi4 (24)
X12 < XH- (31)

is equivalent to Equations (14), (15), and (19).
Equation (23) is simply satisfied by setting Inserting the definition of the x into (24) and (31) shows that these

equations are equivalent to

ft ,lr - X1234 ~ Xl2 , „ ,
y5^5 - Xl3 _ Xl4 • W 0 < (fc, - *2)(*3 - kt) and 0 < (*, - k3)(k4 - k2). (32)

However, in doing so, we must require that this ratio is strictly between We have assumed by symmetry that kx > k2 and k} >k3; now (32) shows
0 and 1. The fact that it must be less than one can be written that fci can't be equal to either k2 or k3. Also, (32) shows that k3 > k4 and

fc4 > k2. All of these inequalities put together imply that k\ > k3 > k4 >
nf, k2, which directly implies (24).

Xi4 + X1234 < X12 + X13 W Furthermore, another rearrangement of (26) using the inequality (31)
leads to X1234 < Xi3- This after substitution gives (1 — kik3)(l — k2k4) < 0,

which by a short calculation is equivalent to (13). Later it will be shown which implies that it is impossible for all of the k-, to be either less than
that other equations imply that (25) is greater than 0. or greater than 1.
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Note that (12) excludes the case k-i > k3 > 1 > k4 > k2; this leaves
k{ > 1 > k3 > fc4 > k2andki > k3 > /c4 > 1 > k2. We can assume the lat-
ter without loss of generality by exchanging the 9-, and the xffj (which
corresponds to replacing fc, with fc,"1) and renumbering.

So far we have described how to find values for the branch lengths so
that the Invariants (3) and (4) and the internal branch length inequality
(19) are satisfied. However, we also need to check that the resulting
pendant branch lengths for the tree are positive. Here we describe how
this can be achieved by taking a lower bound on the values of f,.

Assume edges a and b are adjacent on the 12|34 trees being mixed,
and a and c are adjacent on the resulting 13|24 tree. Then, by Lemma 1
and (2), the fidelity of the pendant a edge is

(aOa9b

a9b959c

In order to assure that the resulting pendant branch length for edge a
is positive, we must show that the above fidelity is less than 1. This is
equivalent to showing that 9a must satisfy

a + (1 - a)kbk5kc

- a)k.kb][a + (1 - a)kak5kc]
(33)

for all such a, b, c triples. Thus this equation along with (21) imply
upper bounds for <?„; by the definition of fidelities these translate to
lower bounds for ta. This concludes the proof.

Note that the proof actually completely characterizes (up to relabel-
ing) the set of branch lengths and mixing weights such that the resulting
mixture mimics a tree of different topology.

Proposition 7. If two sets of branch lengths on the 12|34 tree mix to mimic a
tree of the topology 13|24, then up to relabeling the associated k, must satisfy
the inequalities (11), (12), (13), and (29); the9\ must satisfy the inequalities
(21) and (33). The two required equalities are that the product 6$^$ must
satisfy (25), and the associated p must satisfy (22).

Kullback-Leibler Lemma
Lemma 8. Assume some group-based model G and let A be the probability
simplex for distributions on four taxa under G. Let V c A be the set of all

site-pattern frequencies for some quartet tree under G. Then

, V):= nun8KL(p, v)

exists and is continuous for all p in the interior of A.

Proof. Note that Sm(p,q) is a continuous function when probability
distributions p and q have no components 0; i.e., they sit in the inte-
rior A of the probability simplex A. We will show that for any p 6 A,
there exists an open neighborhood U of p such that SKi(p', V) exists
and is continuous for all p' e U. Given p, let pmin be the smallest com-
ponent pi of p. Let U = \p' e A : p\ > pmjn/2). Then choose e > 0 such
that

log(pmin/2) + -
2

log(l/e) > supinf SKL(p', q).

The right-hand side of this equation is finite (because it is bounded
above by sup ,€(J SKL(p', q*) for any point q* e V with no components
0).

Let B = {q e V : q-x > e for all i}. V, being the continuous image of
a closed unit cube, is a compact set (Moulton and Steel, 2004); therefore,
B C A is compact as well. Now for any p' e U and q' & V — B

', q') =

log(pmin/2)+-pminlog(l/£)

inf 8KL(p',q)

so the infimum cannot be achieved outside B. Consequently,

inf <$KL(/?'/ q) = n"iin<$KL(p', cj)

for all p' € U. Thus the right-hand side exists; continuity follows from
standard analytic arguments.


