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Fig. 1. The tanglegrams of size 3.

1. Introduction

Tanglegrams are graphs obtained by taking two binary rooted trees with the same 
number of leaves and matching each leaf from the tree on the left with a unique leaf 
from the tree on the right. This construction is used in the study of cospeciation and 
coevolution in biology. For example, the tree on the left may represent the phylogeny of 
a host, such as gopher, while the tree on the right may represent a parasite, such as louse 
[14], [22, page 71]. One important problem is to reconstruct the historical associations 
between the phylogenies of host and parasite under a model of parasites switching hosts, 
which is an instance of the more general problem of cophylogeny estimation. See [22–24]
for applications in biology. Diaconis and Holmes have previously demonstrated how one 
can encode a phylogenetic tree as a series of binary matchings [7], which is a distinct use 
of matchings from that discussed here.

In computer science, the Tanglegram Layout Problem (TL) is to find a drawing of a 
tanglegram in the plane with the left and right trees both given as planar embeddings 
with the smallest number of crossings among (straight) edges matching the leaves of the 
left tree and the right tree [2]. These authors point out that tanglegrams occur in the 
analysis of software projects and clustering problems.

In this paper, we give the exact enumeration of tanglegrams with n matched pairs 
of vertices, along with a simple asymptotic formula and an algorithm for choosing a 
tanglegram uniformly at random. We refer to the number of pairs of matched vertices in 
a tanglegram as its size. Furthermore, two tanglegrams are considered to be equivalent 
if one is obtained from the other by replacing the tree on the left or the tree on the right 
by isomorphic trees. For example, in Fig. 1, the two non-equivalent tanglegrams of size 3 
are shown.

We state our main results here postponing some definitions until Section 2. The fol-
lowing is our main theorem.

Theorem 1. The number of tanglegrams of size n is

tn =
∑
λ

∏�(λ)
i=2

(
2(λi + · · · + λ�(λ)) − 1

)2
zλ

,

where the sum is over binary partitions of n and zλ is defined by Equation (1).
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Fig. 2. The 13 tanglegrams of size 4.

The first 10 terms of the sequence tn starting at n = 1 are

1, 1, 2, 13, 114, 1509, 25595, 535753, 13305590, 382728552,

see [21, A258620] for more terms.

Example. The binary partitions of n = 4 are (4), (2, 2), (2, 1, 1) and (1, 1, 1, 1), so

t4 = 1
4 + 32

8 + 32 · 12

4 + 52 · 32 · 12

24 = 13

as shown in Fig. 2. It takes a computer only a moment to compute

t42 = 33889136420378480492869677415186948305278176263020722832251621520063757

and under a minute to compute all 3160 integer digits of t1000 using a recurrence based 
on Theorem 1 given in Section 6.

We use the main theorem to study the asymptotics of the sequence tn. It turns out 
that

tn
n! ∼

e
1
8 4n−1

πn3 ,

see Corollary 8 for an explanation and better estimates.

A side result of the proof is a new formula for the number of inequivalent (i.e., non-
isomorphic) binary trees, called the Wedderburn–Etherington numbers [21, A001190].
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Fig. 3. The tangled chains of length 3 for n = 3.

Theorem 2. The number of inequivalent binary trees with n leaves is

bn =
∑
λ

∏�(λ)
i=2 (2(λi + · · · + λ�(λ)) − 1)

zλ
,

where the sum is over binary partitions of n.

A tangled chain is an ordered sequence of k binary trees with matchings between 
neighboring trees in the sequence. For k = 1, these are inequivalent binary trees, and for 
k = 2, these are tanglegrams, so the following generalizes Theorems 1 and 2.

In terms of computational biology, tangled chains of length k formalize the essential 
input to a variety of problems on k leaf-labeled (phylogenetic) trees (e.g. [28]).

Theorem 3. The number of ordered tangled chains of length k for n is

∑
λ

∏�(λ)
i=2

(
2(λi + · · · + λ�(λ)) − 1

)k
zλ

,

where the sum is over binary partitions of n.

Example. For n = k = 3, we have partitions (2, 1) and (1, 1, 1), and the theorem gives

13

2 + 33 · 13

6 = 5,

as shown in Fig. 3. For k = 3, the number of tangled chains on trees with n leaves gives 
rise to the sequence starting

1, 1, 5, 151, 9944, 1196991, 226435150, 61992679960, 23198439767669, 11380100883484302.

See [21, A258486] for more terms.

From the enumerative point of view, it is also quite natural to ask how likely a 
particular tree T is to appear on one side or the other of a uniformly selected tanglegram. 
In Section 7, we give a simple explicit conjecture for the asymptotic growth of the 
expected number of copies of T on one side of a tanglegram as a function of T and 
the size of the tanglegram. For example, the cherries of a binary tree are pairs of leaves 
connected by a common parent. We conjecture that the expected number of cherries in 
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one of the binary trees of a tanglegram of size n chosen in the uniform distribution is 
n/4.

Further discussion of the applications of tanglegrams along with several variations on 
the theme are described in [20]. In particular, tanglegrams can be used to compute the 
subtree-prune-regraft distance between two binary trees. In a recent follow up paper, 
Gessel has used the formula given here for binary trees to count several variations on 
tanglegrams using the theory of species [13].

The paper proceeds as follows. In Section 2, we define our terminology and state 
the main theorems. We prove the main theorems in Section 3. Section 4 contains an 
algorithm to choose a tanglegram uniformly at random for a given n. In Section 5, we 
give several asymptotic approximations to the number of tanglegrams with increasing 
accuracy and complexity. In Section 6, we give a recursive formula for both the number 
of tanglegrams and for tangled chains. We conclude with several open problems and 
conjectures in Section 7.

2. Background

In this section, we recall some vocabulary and notation on partitions and trees. This 
terminology can also be found in standard textbooks on combinatorics such as [26]. We 
use these terms to give the formal definition of tanglegrams and the notation used in the 
main theorems.

A partition λ = (λ1, λ2, . . . , λk) is a weakly decreasing sequence of positive integers. 
The length �(λ) of a partition is the number of entries in the sequence, and |λ| denotes 
the sum of the entries of λ. We say λ is a binary partition if all its parts are equal to a 
nonnegative power of 2. Binary partitions have appeared in a variety of contexts, see for 
instance in [17,18,25] and [21, A000123]. When writing partitions, we sometimes omit 
parentheses and commas.

If λ is a nonempty binary partition with mi occurrences of the letter 2i for each i, we 
also denote λ by (1m0 , 2m1 , 4m2 , 8m3 , . . . , (2j)mj ) where 2j = λ1 is the maximum value 
in λ. Given λ = (1m0 , 2m1 , . . . , (2j)mj ), let zλ denote the product

zλ = 1m02m1 · · · (2j)mjm0!m1!m2! · · ·mj !. (1)

The numbers zλ are well known since the number of permutations in Sn with cycle type 
λ is n!/zλ [26, Prop. 1.3.2]. For example, for λ = 44211 = (12, 21, 42), zλ = 12 · 21 · 42 ·
2! · 1! · 2! = 128.

A rooted tree has one distinguished vertex assumed to be a common ancestor of all 
other vertices. The neighbors of the root are its children. Each vertex other than the root 
has a unique parent going along the path back to the root, the other neighbors are its 
children. In a binary tree, each vertex either has two children or no children. A vertex 
with no children is a leaf, and a vertex with two children is an internal vertex. Two binary 
rooted trees with labeled leaves are said to be equivalent if there is an isomorphism from 
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one to the other as graphs mapping the root of one to the root of the other. Let Bn be 
the set of inequivalent binary rooted trees with n ≥ 1 leaves, and let bn be the number 
of elements in the set Bn. The sequence of bn’s for n ≥ 1 begins

1, 1, 1, 2, 3, 6, 11, 23, 46, 98.

We can inductively define a linear order on rooted trees as follows. We say that T > S

if either:

• T has more leaves than S,
• T and S have the same number of leaves, T has subtrees T1 and T2, T1 ≥ T2, S has 

subtrees S1 and S2, S1 ≥ S2, and T1 > S1 or T1 = S1 and T2 > S2.

We assume that every tree T in Bn, n ≥ 2, is presented so that T1 ≥ T2, where T1 is 
the left subtree (or upper subtree if the tree is drawn with the root on the left or on the 
right) and T2 is the right (or lower) subtree.

For each tree T ∈ Bn, we can identify its automorphism group A(T ) as follows. 
Fix a labeling on the leaves of T using the numbers 1, 2, . . . , n. Label each internal 
vertex by the union of the labels for each of its children. The edges in T are pairs of 
subsets from [n] := {1, . . . , n}, each representing the label of a child and its parent. Let 
v = [v(1), v(2), . . . , v(n)] be a permutation in the symmetric group Sn. Then, v ∈ A(T )
if permuting the leaf labels by the function i �→ v(i), for each i, leaves the set of edges 
fixed.

A theorem due to Jordan [16] tells us that if T is a tree with subtrees T1 and T2, then 
A(T ) is isomorphic to A(T1) ×A(T2) if T1 �= T2, and to the wreath product A(T1) �Z2 if 
T1 = T2. Since the automorphism group of a tree on one vertex is trivial, this implies that 
the general A(T ) can be obtained from copies of Z2 by direct and wreath products (see 
[20] for more details). Furthermore, if T1 �= T2, then the conjugacy type of an element 
of A(T ) is λ1 ∪ λ2, where λi is the conjugacy type of an element of A(Ti), i = 1, 2, and 
λ1∪λ2 is the multiset union of the two sequences written in decreasing order. If T1 = T2, 
then for an arbitrary element of A(T ) either the leaves in each subtree remain in that 
subtree, or all leaves are mapped to the other subtree. The conjugacy type of an element 
of A(T ) is then either λ1 ∪ λ2, where λi is the conjugacy type of an element of A(Ti), 
i = 1, 2, or it is 2λ1 = λ1 ∪ λ1, where λ1 is the conjugacy type of an element of A(T1). 
In particular, the conjugacy type of any element of the automorphism group of a binary 
tree must be a binary partition.

Next, we define tanglegrams. Given a permutation v ∈ Sn along with two trees T, S ∈
Bn each with leaves labeled 1, . . . , n, we construct an ordered binary rooted tanglegram
(T, v, S) of size n with T as the left tree, S as the right tree, by identifying leaf i in 
T with leaf v(i) in S. Note, (T, v, S) and (T ′, v′, S′) are considered to represent the 
same tanglegram provided T = T ′, S = S′ as trees and v′ = uvw where u ∈ A(T ) and 
w ∈ A(S). Let Tn be the set of all ordered binary rooted tanglegrams of size n, and let tn
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be the number of elements in the set Tn. For example, t3 = 2 and t4 = 13. Figs. 1 and 2
show the tanglegrams of sizes 3 and 4 where we draw the leaves of the left and right tree 
on separate vertical lines and show the matching using dashed lines. The dashed lines 
are not technically part of the graph, but this visualization allows us to give a planar 
drawing of the two trees.

We remark that the plane binary trees with n ≥ 2 leaves are a different family of 
objects from Bn that also come up in this paper. These are trees embedded in the plane 
so that the left child of a vertex is distinguishable from the right child. The plane binary 
trees with n + 1 leaves are well known to be counted by Catalan numbers

cn = 1
n + 1

(
2n
n

)
= 2n(2n− 1)!!

(n + 1)!

because they clearly satisfy the Catalan recurrence

cn = c0cn−1 + c1cn−2 + c2cn−3 + · · · + cn−1c0

with c0 = c1 = 1. For example, there are c2 = 2 distinct plane binary trees with 3 leaves 
which are mirror images of each other while b3 = 1. The sequence of cn’s for n ≥ 0 begins

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862,

see [21, A000108].
Dulucq and Guibert [8] have studied “twin binary trees”, which are pairs of plane 

binary trees with matched vertices. This is the plane version of tanglegrams. They show 
that twin binary trees are in bijection with Baxter permutations. The Baxter permuta-
tions in Sn are enumerated by a formula due to Chung–Graham–Hoggatt–Kleiman [4]

an =
∑n

k=1
(
n+1
k−1

)(
n+1
k

)(
n+1
k+1

)
(
n+1

1
)(

n+2
2
) .

See also the bijective proof by Viennot [27], and further refinements [5,9].

3. Proof of the main theorems

The focus of this section is the proof of Theorem 1, namely that

tn =
∑
λ

∏�(λ)
i=2

(
2(λi + · · · + λ�(λ)) − 1

)2
zλ

,

where the sum is over binary partitions of n. The proof of Theorem 1 reflects the chrono-
logical steps of discovery. Theorem 2 will follow from an auxiliary result, and the proof 
of Theorem 3 is similar and is included at the end of the section.
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The number of tanglegrams is, by definition, equal to

tn =
∑
T

∑
S

|C(T, S)|,

where the sums on the right are over inequivalent binary trees with n leaves, and C(T, S)
is the set of double cosets of the symmetric group Sn with respect to the double action 
of A(T ) on the left and A(S) on the right. Let us fix T ∈ Bn and S ∈ Bn and write 
C = C(T, S). Then

|C| =
∑
C∈C

1 =
∑
C∈C

|C|
|C| =

∑
C∈C

∑
w∈C

1
|C| =

∑
w∈Sn

1
|Cw|

,

where Cw is the double coset of Sn that contains w. It is known (e.g. [15, Theo-
rem 2.5.1 on page 45 and Exercise 40 on page 49]) that the size of the double coset 
Cw = A(T )wA(S) is the quotient

|A(T )| · |A(S)|
|A(T ) ∩ wA(S)w−1| , (2)

and therefore,

|C| =
∑

w∈Sn

|A(T ) ∩ wA(S)w−1|
|A(T )| · |A(S)| .

We have
∑

w∈Sn

|A(T ) ∩ wA(S)w−1| =
∑

w∈Sn

∑
u∈A(T )

∑
v∈A(S)

�u = wvw−1�

=
∑

u∈A(T )

∑
v∈A(S)

∑
w∈Sn

�u = wvw−1�,

where �·� is the indicator function. Now u = wvw−1 can only be true if u and v are 
permutations of the same conjugacy type λ, which must necessarily be a binary partition 
as noted above. Furthermore, if u and v are both of type λ, then there are zλ permutations 
w for which u = wvw−1. That means that

|C(T, S)| =
∑

λ |A(T )λ| · |A(S)λ| · zλ
|A(T )| · |A(S)| , (3)

where A(T )λ (respectively, A(S)λ) denotes the elements of A(T ) (resp., A(S)) of type λ.
Equation (3) is already quite useful for computing all tanglegrams with fixed left and 

right trees. For example, if T and S are both the least symmetric tree with only one 
cherry, then A(T ) = A(S) = {id, (1, 2)}, the sum is over only two binary partitions of 
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size n, namely (1, . . . , 1) and (2, 1, . . . , 1), and we get

|C| = n! + 2(n− 2)!
2 · 2 = (n2 − n + 2)(n− 2)!

4 .

In some other cases the summation is over many more λ’s, and can get quite complicated.
However, to get the formula for tn we want to sum Equation (3) over all pairs of trees, 

and fortunately a change of the order of summation helps. Indeed, we have

tn =
∑
T

∑
S

∑
λ |A(T )λ| · |A(S)λ| · zλ

|A(T )| · |A(S)| =
∑
λ

zλ ·
∑
T

∑
S

|A(T )λ| · |A(S)λ|
|A(T )| · |A(S)| (4)

=
∑
λ

zλ ·
(∑

T

|A(T )λ|
|A(T )|

)2

, (5)

and the main theorem will be proved once we have shown the following proposition.

Proposition 4. For a binary partition λ,

∑
T∈Bn

|A(T )λ|
|A(T )| =

∏�(λ)
i=2 (2

(
λi + · · · + λ�(λ)

)
− 1)

zλ
,

where A(T )λ denotes the elements of A(T ) of type λ.

The proposition also implies Theorem 2, as

∑
T

1 =
∑
T

∑
λ

|A(T )λ|
|A(T )| =

∑
λ

∑
T

|A(T )λ|
|A(T )| .

If λ = 1n, then |A(T )λ| = 1 for all T ∈ Bn, so the proposition is saying that

∑
T

1
|A(T )| = (2n− 3)!!

n! = cn−1

2n−1 .

This is equivalent to 
∑

T 2n−1/|A(T )| = cn−1. Since 2n−1/|A(T )| counts all plane binary 
trees isomorphic to T , this is just the well-known fact that there are cn−1 plane binary 
trees with n leaves.

For a general λ, however, the proposition is far from obvious. What we need is a 
recursion satisfied by the expression on the right, analogous to the recursion cn =
c0cn−1 + c1cn−1 + · · · + cn−1c0 for Catalan numbers.

Lemma 5. For a nonempty subset S = {i1 < i2 < . . . < ik} of positive integers define

rS(x1, x2, . . .) = (xi2 +· · ·+xik−1)(xi3 +· · ·+xik−1) · · · (xik−1 +xik−1)(xik−1). (6)
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Let n ≥ 2, let x denote variables x1, x2, . . ., and let x/2 denote x1/2, x2/2, . . .. Then

r[n](x) = 2n−1r[n](x/2) +
∑

1∈S�[n]

rS(x) · r[n]\S(x).

Example. For n = 3, the lemma says that

(x2 + x3 − 1)(x3 − 1) = (x2 + x3 − 2)(x3 − 2) + 1 · (x3 − 1) + (x2 − 1) · 1 + (x3 − 1) · 1,

where the last three terms on the right-hand side correspond to subsets {1}, {1, 2}, and 
{1, 3}, respectively. As another example, take xi = 2 for all i. Then rS(x) = (2|S| − 3)!!
(where we interpret (−1)!! as 1), rS(x/2) = 0, and by the obvious symmetry of S and 
[n] \ S the lemma yields

2 · (2n− 3)!! =
n−1∑
k=1

(
n

k

)
(2k − 3)!!(2n− 2k − 3)!!,

which is equivalent to the standard recurrence for Catalan numbers.

Proof of Lemma 5. The proof is by induction on n. For n = 2, the statement is simply 
x2 − 1 = (x2 − 2) + 1 · 1. Assume that the statement holds for n − 1, and let us prove it 
for n. Both sides are linear functions in x2, so it is sufficient to prove that they have the 
same coefficient at x2 and that they give the same result for one value of x2.

The coefficient of x2 in r[n](x) (resp., 2n−1r[n](x/2)) is clearly r[2,n](x) (resp., 
2n−2r[2,n](x/2)). On the other hand, rS(x) · r[n]\S(x) contains x2 if and only if 2 ∈ S, in 
which case the coefficient at x2 is rS\{1}(x) · r[2,n]\S(x). The coefficients on both sides 
are equal by induction.

Plug the value x2 = 2 − x3 − · · · − xn into both sides. Clearly, the left-hand side 
becomes r[n]\{2}(x). It is easy to see that if 2 ∈ S, then rS(x) · r[n]\S(x) + rS\{2}(x) ·
r([n]\S)∪{2}(x) = 0. That means that all the terms in the summation cancel out except 
r[n]\{2}(x) · r{2}(x) = r[n]\{2}(x). Obviously, r[n](x/2) = 0, so the right-hand side also 
equals r[n]\{2}(x). �
Proof of Proposition 4. Say λ is a binary partition of n. The proof is by induction on n. 
For n = 1, the statement is obvious. Assume that the statement holds for all binary 
partitions up to size n − 1. Our task is to show

∑
T

|A(T )λ|
|A(T )| =

r[�(λ)](2λ1, 2λ2, 2λ3, . . .)
zλ

by showing the left hand side satisfies a recurrence similar to (6).
Given T ∈ Bn, let T1 and T2 be the subtrees of the root in T . Fix a labeling on the 

leaves of T such that the leaves of T1 are labeled [1, k] and the leaves of T2 are labeled 
[k + 1, n]. Consider each A(Ti) to be a subgroup of the permutations of the leaf labels 
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for Ti. We can obtain a permutation of type λ in A(T ) in one of two ways. First, we 
can choose permutations w1 ∈ A(T1), w2 ∈ A(T2) of types λ1 and λ2, then w1w2 is a 
permutation of A(T ) of type λ. Second, if all parts of λ are at least 2 and T1 = T2 (and 
in particular n = 2k), we can choose an arbitrary permutation w1 ∈ A(T1) and another 
permutation w2 ∈ A(T1) specifically of type λ/2 := (λ1/2, λ2/2, . . .) and construct a 
permutation w ∈ A(T ) of cycle type λ as follows. Say f : [1, k] −→ [k + 1, n] mapping i
to i +k induces an isomorphism of T1 and T2. Define the “tree flip permutation” π to be 
the product of the transpositions interchanging i with f(i) for all 1 ≤ i ≤ k. Now take 
the product

w = πw1πw
−1
1 πw2.

It is clear that w ∈ A(T ) since it is the product of permutations in A(T ). Observe also 
that the cycles of w are constructed so the leaf labels of T1 interleave the leaf labels 
of T2 in the cycles of w2 so w will have cycle type λ. For example, if λ = (6, 4), then 
|λ| = 10 and π = (1 6)(2 7)(3 8)(4 9)(5 10). If we choose w1 = (1 4)(2 5)(3) and 
w2 = (6 9 7)(8 10) then w = πw1πw

−1
1 πw2 = (6 1 9 5 7 4)(8 2 10 3), all in cycle 

notation. Also, every element of A(T ) is constructed in one of these two ways.
We need to be careful to differentiate between the cases when the subtrees T1, T2 are 

different and when they are equivalent. We have

∑
T

|A(T )λ|
|A(T )| =

∑
T1>T2

|A(T )λ|
|A(T )| +

∑
T1=T2

|A(T )λ|
|A(T )|

=
∑

T1>T2

( ∑
λ1∪λ2=λ

|A(T1)λ1 | · |A(T2)λ2 |
|A(T1)| · |A(T2)|

)

+
∑
T1

(
∑

λ1∪λ2=λ |A(T1)λ1 | · |A(T1)λ2 |) + |A(T1)| · |A(T1)λ/2|
2|A(T1)|2

or equivalently

2
∑

T∈Bn

|A(T )λ|
|A(T )| =

∑
T1∈Bn/2

|A(T1)λ/2|
|A(T1)|

+
∑

λ1∪λ2=λ

⎛
⎝ ∑

T1∈B|λ1|

|A(T1)λ1 |
|A(T1)|

⎞
⎠

⎛
⎝ ∑

T2∈B|λ2|

|A(T2)λ2 |
|A(T2)|

⎞
⎠ . (7)

Let

qλ =
∏�(λ)

i=2 (2(λi + · · · + λ�(λ)) − 1)
zλ

=
r[�(λ)](2λ1, 2λ2, 2λ3, . . .)

zλ
;

the notation also makes sense if λ�(λ) = 1/2, as in that case qλ = 0. By the induction 
hypothesis and (7), it suffices to prove that
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2qλ = qλ/2 +
∑

λ1∪λ2=λ

qλ1 · qλ2 . (8)

After multiplying both sides by zλ, this is

2
�(λ)∏
i=2

(2(λi + · · · + λ�(λ)) − 1) = 2�(λ)
�(λ)∏
i=2

(λi + · · · + λ�(λ) − 1)

+
∑

λ1∪λ2=λ

(
λ

λ1, λ2

)
·
�(λ1)∏
i=2

(2(λ1
i + · · · + λ1

�(λ1)) − 1) ·
�(λ2)∏
i=2

(2(λ2
i + · · · + λ2

�(λ2)) − 1),

where 
(

λ
λ1,λ2

)
=

∏
i

(mi(λ)
mi(λ1)

)
. This equality holds by Lemma 5 with xi = 2λi. �

We conclude this section with the proof of Theorem 3.

Proof of Theorem 3. Let T = (T1, T2, . . . , Tk) be an ordered list of binary trees in Bn. 
Define CT to be the set of “multicosets” of Sn with respect to A(T1) × A(T2) ×
· · · × A(Tk). More concretely, given (w1, . . . , wk−1), (w′

1, . . . , w
′
k−1) ∈ (Sn)k−1, we say 

(w1, . . . , wk−1) ≡T (w′
1, . . . , w

′
k−1) provided there exist ti ∈ A(Ti) such that wi =

tiw
′
iti+1 for all i = 1, . . . , k − 1. Then, CT is the set of equivalence classes modulo ≡T. 

By definition, the number of tangled chains of length k and size n, denoted t(k, n), is 
given by

t(k, n) =
∑

|CT| (9)

where the sum is over all ordered lists T = (T1, T2, . . . , Tk) of trees Ti ∈ Bn.
Fix a particular list of trees T = (T1, T2, . . . , Tk), and let CT(w1, . . . , wk−1) be the 

multicoset in CT containing (w1, . . . , wk−1). Clearly,

|CT| =
∑

w1∈Sn

∑
w2∈Sn

· · ·
∑

wk−1∈Sn

1
|CT(w1, . . . , wk−1)|

.

We give a recurrence for |CT(w1, . . . , wk−1)| in terms of the following subgroup. Let 
A(CT(w1, . . . , wk−1)) be the subgroup of all t1 ∈ A(T1) such that there exist ti ∈
A(Ti) for 2 ≤ i ≤ k satisfying wi = tiwiti+1 for all i = 1, . . . , k − 1. In this case, 
(t1w1, w2, . . . , wk−1) ≡T (w1, w2, . . . , wk−1) so we think of A(CT(w1, . . . , wk−1)) as the 
“left automorphism group” of CT(w1, . . . , wk−1). Observe that

A(CT(w1, . . . , wk−1))

= A(T1) ∩ w1A(T2)w−1
1 ∩ · · · ∩ w1w2 · · ·wk−1A(Tk)w−1

k−1 · · ·w−1
2 w−1

1 ,

so
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|A(CT(w1, . . . , wk−1))|

=
k∑

i=1

∑
ti∈A(Ti)

�t1 = w1t2w
−1
1 � · �t2 = w2t3w

−1
2 � · · · �tk−1 = wk−1tkw

−1
k−1�.

Now let T′ = (T2, . . . , Tk). For each (v2, . . . , vk−1) ∈ CT′(w2, . . . , wk−1), we can prepend 
a v1 to create a distinct element (v1, v2, . . . , vk−1) ∈ CT(w1, . . . , wk−1) exactly when v1
is in A(T1)w1A(CT′(w2, . . . , wk−1)) which is again a double coset of Sn. Thus, by the 
formula (2) for double cosets we have

|CT(w1, . . . , wk−1)| = |A(T1)| · |A(CT′(w2, . . . , wk−1))|
|A(CT(w1, . . . , wk−1))|

· |CT′
(w2, . . . , wk−1)|

= |A(T1)| · |A(T2)| · · · |A(Tk)|
|A(CT(w1, . . . , wk−1))|

by induction on k. Therefore,

|CT| =
∑

w1∈Sn

∑
w2∈Sn

· · ·
∑

wk−1∈Sn

|A(CT(w1, . . . , wk−1))|
|A(T1)| · |A(T2)| · · · |A(Tk)|

, (10)

where the denominators do not depend on the wi’s.
Focusing on the sum in the numerator in (10), we have∑

(w1,w2,...,wk−1)

|A(CT(w1, . . . , wk−1))|

=
∑

(w1,w2,...,wk−1)

∑
t1∈A(T1)

· · ·
∑

tk∈A(Tk)

�t1 = w1t2w
−1
1 � · · · �tk−1 = wk−1tkw

−1
k−1�

=
∑

t1∈A(T1)

· · ·
∑

tk∈A(Tk)

∑
(w1,w2,...,wk−1)

�t1 = w1t2w
−1
1 � · · · �tk−1 = wk−1tkw

−1
k−1�

and so with similar logic as before, noting that the summand will be nonzero exactly 
when t1, t2, . . . , tk are all of the same conjugacy type λ,

|CT| =
∑

λ |A(T1)λ| · |A(T2)λ| · · · |A(Tk)λ| · zk−1
λ

|A(T1)| · |A(T2)| · · · |A(Tk)|
. (11)

Plugging (11) into (9), we obtain

t(k, n) =
∑

(T1,...,Tk)

∑
λ |A(T1)λ| · |A(T2)λ| · · · |A(Tk)λ| · zk−1

λ

|A(T1)| · |A(T2)| · · · |A(Tk)|

=
∑
λ

zk−1
λ ·

( ∑
T∈Bn

|A(T )λ|
|A(T )|

)k

,

and Theorem 3 now follows from Proposition 4. �
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4. Random generation of tanglegrams and inequivalent binary trees

In this section, we describe an algorithm in 3 stages to produce a random tanglegram 
in Tn. The stages are based on Equation (4) and the proof of Proposition 4. A similar 
algorithm is also described to choose a random binary tree with n leaves. In this section, 
“random” will mean uniformly at random unless specified otherwise.

Recall from Section 3 that if T is a tree with equivalent left and right subtrees, we 
denote by π the “tree flip permutation” between the subtrees. Also, for a partition λ, we 
defined

qλ =
∏�(λ)

i=2 (2(λi + · · · + λ�(λ)) − 1)
zλ

.

The qλ notation also makes sense if λ�(λ) = 1/2, as in that case qλ = 0.
We will frequently require an algorithm to generate a binary partition λ with prob-

ability qλ. This is simply done by generating all binary partitions of n, computing qλ
for each, and then sampling from this categorical distribution using inverse transform 
sampling.

Algorithm 1 (Random generation of w ∈ A(T )).
Input: Binary tree T ∈ Bn.
Procedure: If T is the tree with one vertex, let w be the unique element of A(T ). 
Otherwise, the root of T has subtrees T1 and T2. Assume the leaves of T1 are labeled 
[1, k] and the leaves of T2 are labeled [k+1, n]. Use the algorithm recursively to produce 
wi ∈ A(Ti), i = 1, 2 where A(T1) is a subset of the permutations of [1, n] which fix 
[k + 1, n] and A(T2) is a subset of the permutations of [1, n] which fix [1, k]. Construct 
w as follows.

• If T1 �= T2, set w = w1w2.
• If T1 = T2, choose either w = w1w2 or w = πw1w2 with equal probability.

Output: Permutation w ∈ A(T ).

Algorithm 2 (Random generation of T with non-empty A(T )λ and w ∈ A(T )λ).
Input: Binary partition λ of n.
Procedure: If n = 1, let T be the tree with one vertex, and let w be the unique element 
of A(T ).

Otherwise, pick a subdivision (λ1, λ2) from {(λ1, λ2) : λ1 ∪ λ2 = λ} ∪ {(λ/2, λ/2)}, 
where (λ1, λ2) is chosen with probability proportional to qλ1qλ2 and (λ/2, λ/2) with 
probability proportional to qλ/2.



S.C. Billey et al. / Journal of Combinatorial Theory, Series A 146 (2017) 239–263 253
• If λ1, λ2 �= λ/2, use the algorithm recursively to produce trees T1, T2 and permuta-
tions w1 ∈ A(T1)λ1 , w2 ∈ A(T2)λ2 . If necessary, switch T1 ↔ T2, w1 ↔ w2 so that 
T1 ≥ T2. Let T = (T1, T2), w = w1w2.

• If λ1 = λ2 = λ/2, use the algorithm recursively to produce a tree T1 and a permu-
tation w2 ∈ A(T1)λ/2, and use Algorithm 1 to produce a permutation w1 ∈ A(T1). 
Let T = (T1, T1) and w = πw1πw

−1
1 πw2.

Output: Binary tree T and permutation w ∈ A(T )λ.

Algorithm 3 (Random generation of tanglegrams).
Input: Integer n.
Procedure: Pick a random binary partition λ of n with probability proportional to zλq2

λ

where tn =
∑

zλq
2
λ. Use Algorithm 2 twice to produce random trees T and S and 

permutations u ∈ A(T )λ, v ∈ A(S)λ. Among the permutations w for which u = wvw−1, 
pick one at random from the zλ possibilities.
Output: Binary trees T and S and double coset A(T )wA(S), or equivalently (T, w, S).

Algorithm 4 (Random generation of T ∈ Bn).
Input: Integer n.
Procedure: Pick a random binary partition λ of n with probability proportional to qλ. 
Use Algorithm 2 to produce a random tree T (and a permutation u ∈ A(T )λ).
Output: Binary tree T .

Algorithm 4 is not the first of its kind, see also [10].

Algorithm 5 (Random generation of tangled chains).
Input: Positive integers k and n.
Procedure: Pick a random binary partition λ of n with probability proportional to 
zk−1
λ qkλ where t(k, n) =

∑
zk−1
λ qkλ. Use Algorithm 2 k times to produce random trees Ti

and permutations ui ∈ A(Ti)λ for i = 1, . . . , k. Among the permutations wi for which 
ui = wiui+1w

−1
i , pick one uniformly at random for each i = 1, . . . , k − 1.

Output: (T1, . . . , Tk) and (w1, . . . , wk−1).

Theorem 6. For any positive integer n, the following hold.

• Algorithm 1 produces every permutation w ∈ A(T ) with probability 1
|A(T )| .

• Algorithm 2 produces every pair (T, w), where w ∈ A(T )λ, with probability 1
|A(T )|·qλ .

• Algorithm 3 produces every tanglegram with probability 1
tn

.
• Algorithm 4 produces every inequivalent binary tree with probability 1

bn
.

• Algorithm 5 produces every tangled chain of length k of trees in Bn with probability 
1 .
t(k,n)
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Proof. The first two proofs are by induction, with the case n = 1 being obvious. The 
induction for Algorithm 1 is trivial.

For Algorithm 2, say that we are given a binary partition λ, a tree T with n = |λ|
leaves, and w ∈ A(T )λ. We compute the probability that Algorithm 2 produces T and w. 
Assume first that T1 > T2 are the subtrees of T . In particular, that means that w can 
be written uniquely as w1w2, where w1 ∈ A(T1) and w2 ∈ A(T2). Say that wi is of 
type λi; we must have λ = λ1 ∪ λ2. If λ1 �= λ2, there are two ways in which Algorithm 2
can produce (T, w): either we partition λ into (λ1, λ2), and then the algorithm produces 
(T1, w1) and (T2, w2), or we partition λ into (λ2, λ1), then the algorithm produces (T2, w2)
and (T1, w1), and finally switches T1 ↔ T2, w1 ↔ w2. Since T1 and T2 are chosen 
independently, we can apply (8) and induction to obtain the probability that (T, w) is 
chosen, namely

2 · qλ1qλ2

2qλ
· 1
|A(T1)| · qλ1

· 1
|A(T2)| · qλ2

= 1
|A(T1)| · |A(T2)| · qλ

= 1
|A(T )| · qλ

.

If λ1 = λ2, but T1 �= T2, there are again two ways in which Algorithm 2 can produce 
(T, w): we must partition λ into (λ1, λ1), and then it can either produce (T1, w1) and 
(T2, w2) or (T2, w2) and (T1, w1); in the latter case it switches T1 ↔ T2, w1 ↔ w2. 
Similarly, the probability is 1

|A(T )|·qλ .
Now assume that T1 = T2. Either w can be written as w1w2, where w1 ∈ A(T1)λ1 and 

w2 ∈ A(T2)λ2 , or as πw2πw
−1
2 πw1, where w1 ∈ A(T1)λ/2 and w2 ∈ A(T1). In the first 

case, (T, w) is produced with probability

qλ1qλ2

2qλ
· 1
|A(T1)| · qλ1

· 1
|A(T1)| · qλ2

= 1
2 · |A(T1)|2 · qλ

= 1
|A(T )| · qλ

.

In the second case, it is produced with probability

qλ/2

2qλ
· 1
|A(T1)| · qλ/2

· 1
|A(T1)|

= 1
2 · |A(T1)|2 · qλ

= 1
|A(T )| · qλ

.

This finishes the case for Algorithm 2.
The proof of the statement for Algorithm 3 is essentially just a rewriting of the proof 

from Section 3; we include it for completeness. We are given n and a tanglegram (T, w, S)
with T and S binary trees with n leaves, C = A(T )wA(S) the double coset containing 
w with respect to A(T ) and A(S), and we want to prove that P (T, S, C), the probability 
that this triple is produced by Algorithm 3, is 1/tn.

We proved that 
∑

zλq
2
λ = tn, so the probability of choosing a binary partition λ is 

zλq
2
λ/tn. So we have

P (T, S,C) =
∑ zλq

2
λ

tn
P (T, S,C|λ),
λ
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where P (T, S, C|λ) is the conditional probability that (T, S, C) is produced if λ is cho-
sen. We can further condition the probability: P (T, S, C|λ) =

∑
P (T, S, C|u, v, T, S, λ) ·

P (u, v, T, S|λ), where the sum is over u ∈ A(T )λ, v ∈ A(S)λ. Furthermore,

P (T, S,C|u, v, T, S, λ) = P (C|u, v) and P (u, v, T, S|λ) = P (T, u|λ) · P (S, v|λ),

and so

P (T, S,C) =
∑
λ

zλq
2
λ

tn

∑
u∈A(T )λ

∑
v∈A(S)λ

P (C|u, v) · 1
|A(T )| · qλ

· 1
|A(S)| · qλ

= 1
tn

·
∑
λ

zλ
|A(T )| · |A(S)| ·

∑
u∈A(T )λ

∑
v∈A(S)λ

|C ∩Bu,v|
|Bu,v| ,

where Bu,v = {w ∈ Sn : u = wvw−1}. We know that |Bu,v| = zλ, so

P (T, S,C) = 1
tn

·
∑
λ

1
|A(T )| · |A(S)|

∑
u∈A(T )λ

∑
v∈A(S)λ

∑
w∈C

�u = wvw−1�

= 1
tn

·
∑
w∈C

∑
λ

1
|A(T )| · |A(S)|

∑
u∈A(T )λ

∑
v∈A(S)λ

�u = wvw−1�

= 1
tn

·
∑
w∈C

∑
λ

|A(T )λ ∩ wA(S)λw−1|
|A(T )| · |A(S)| = 1

tn
·
∑
w∈C

|A(T ) ∩ wA(S)w−1|
|A(T )| · |A(S)|

= 1
tn

·
∑
w∈C

1
|Cw|

= 1
tn

.

Finally, let us prove the statement for Algorithm 4. We have

P (T ) =
∑
λ

P (T |λ) · P (λ) =
∑
λ

|A(T )λ|
|A(T )| · qλ

· qλ
bn

= 1
bn

·
∑

λ |A(T )λ|
|A(T )| = 1

bn
,

which proves that Algorithm 4 produces every inequivalent binary tree with the same 
probability. The proof for Algorithm 5 is similar to Algorithms 3 and 4 so we omit the 
formal proof. �
5. Asymptotic expansion of tn

In this section, we use Theorem 1 to obtain another formula for tn and several formulas 
to approximate tn for large n.

Corollary 7. We have

tn =
c2n−1n!
4n−1

∑ n(n− 1) · · · (n− |μ| + 1)
z ·

∏�(μ) ∏μi−1(2n− 2(μ + · · · + μ ) − 2j − 1)2
, (12)
μ μ i=1 j=1 1 i−1
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where the sum is over binary partitions μ with all parts equal to a positive power of 2
and |μ| ≤ n including the empty partition in which case the summand is 1.

Proof. Every binary partition λ of size n can be expressed as μ1n−|μ|, where all parts of 
μ are at least 2. We have zλ = zμ(n − |μ|)! and

�(λ)∏
i=2

(
2(λi + · · · + λ�(λ)) − 1

)
=

�(λ)−1∏
i=1

(2(n− λ1 − · · · − λi) − 1)

=
�(μ)−1∏
i=1

(2(n− μ1 − · · · − μi) − 1) · (2n− 2|μ| − 1)!!

= (2n− 3)!!∏�(μ)
i=1

∏μi−1
j=1 (2n− 2(μ1 + · · · + μi−1) − 2j − 1)

.

Since (2n − 3)!!/n! = cn−1/2n−1, (12) is an equivalent way to express the number of 
tanglegrams. �

The first few terms of the sum corresponding to partitions ∅, (2), (4), (2, 2), (4, 2), 
(2, 2, 2), (8) are

1 + n(n− 1)
2(2n− 3)2 + n(n− 1)(n− 2)(n− 3)

4(2n− 3)2(2n− 5)2(2n− 7)2 + n(n− 1)(n− 2)(n− 3)
8(2n− 3)2(2n− 7)2

+ n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)
8(2n− 3)2(2n− 5)2(2n− 7)2(2n− 11)2 + n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)

48(2n− 3)2(2n− 7)2(2n− 11)2

+ n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)(n− 6)(n− 7)
8(2n− 3)2(2n− 5)2(2n− 7)2(2n− 9)2(2n− 11)2(2n− 13)2(2n− 15)2 .

Corollary 8. We have

tn
n! ∼

e
1
8 c2n−1
4n−1 ∼ e

1
8 4n−1

πn3 and tn ∼ 22n− 3
2 · nn− 5

2

√
π · en− 1

8
.

We can also compute approximations of higher degree. For example, we have

tn =
e

1
8 c2n−1n!
4n−1 ·

(
1 + 1

4 n
+ 137

256 n2 + 1285
1024 n3 + 456017

131072 n4 + 6140329
524288 n5 + O

(
n−6))

= 22n− 3
2 · nn− 5

2

√
π · en− 1

8
·
(

1 + 13
12 n

+ 3089
2304 n2 + 931423

414720 n3 + 826301423
159252480 n4

+ 211060350013
13377208320 n5 + O

(
n−6)).
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Sketch of proof. The crucial observation is that

n(n− 1) · · · (n− |μ| + 1)
zμ ·

∏�(μ)
i=1

∏μi−1
j=1 (2n− 2(μ1 + · · · + μi−1) − 2j − 1)2

∼ n|μ|

zμ · (2n)2(|μ|−�(μ))

= 1
22(|μ|−�(μ)) · zμ · n|μ|−2�(μ) .

So, to find an asymptotic approximation of order O(n−2m) or O(n−2m−1), we only 
have to consider partitions μ with |μ| − 2�(μ) ≤ 2m in Equation (12). For m = 0, we 
only consider partitions of the type 22 · · · 2. The contribution of μ = 2k is 1/(22k2kk!), 
and the sum converges to 

∑
k

1
23kk! = e

1
8 .

Similarly, the coefficient of n−1 can be obtained by considering the coefficient of n−1

in each of these terms, and the higher terms by considering in turn partitions of type 
42k, 422k, 432k, 82k, etc. The last expansion is obtained by considering the asymptotic 
expansions of cn−1 and n!. �
6. A recurrence for enumerating tanglegrams and tangled chains

In this section, we give a recurrence for computing tn. Recall that for each nonempty 
binary partition λ, we can construct its multiplicity vector mλ = (m0, m1, m2, m3, . . .)
where mi is the number of times 2i occurs in λ. The map λ �→ mλ is a bijection from 
binary partitions to vectors of nonnegative integers with only finitely many nonzero 
entries. The quantity zλ for a binary partition λ is easily expressed in terms of the 
multiplicities in mλ as

zλ =
∏
h≥0

2h·mh mh! =
∏
h≥0
mh �=0

mh∏
j=1

j · 2h

We will use the functions

f2(s) := (2s− 1)2, (13)

c(h,m, s) :=
m∏
j=1

f2(s + j · 2h)
j · 2h , (14)

and

r(h, n, s) :=
n∑

m=0
(n−m) even

c(h,m, s) r

(
h + 1, n−m

2 , s + m2h
)

(15)

with base cases

c(h, 0, s) = r(h, 0, s) = 1. (16)
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Lemma 9. For n ≥ 1, the number of tanglegrams is

tn = r(0, n, 0)
f2(n) ,

which can be computed recursively using (15).

Proof. Let t̃n := (1 − 2n)2tn. By the main formula

t̃n =
∑
λ

∏�(λ)
i=1

(
2(λi + · · · + λ�(λ)) − 1

)2
zλ

, (17)

where the sum is over binary partitions of n.
We will consider the contribution to (17) from the parts of the partition of size 2h

for each h separately. To do this we will need to keep track of the partial sums of parts 
smaller than 2h. Let sλ = (sλ0 , sλ1 , . . .) where sλh =

∑h−1
i=0 mi2i and sλ0 = 0. Then the 

contribution of the parts of size 2h in λ to the corresponding term in (17) is the factor 
c(h, mh, sλh). Using this notation, we have

t̃n =
∑

mλ=(m0,m1,...)�n
c(0,m0, 0)c(1,m1, s

λ
1 )c(2,m2, s

λ
2 ) · · · (18)

where the sum is over binary partitions of n represented by their multiplicity vector.
Next consider the binary partitions with exactly j parts of size 1. Note n − j must be 

even for this set to be nonempty. The binary partitions of n with exactly j parts equal 
to 1 are in bijection with the binary partitions of n−j

2 , so

t̃n =
n∑

m0=0
(n−m0) even

c(0,m0, 0)
∑

(m1,m2,...)�n−m0
2

c(1,m1,m0)c(2,m2,m0+2·m1) · · · . (19)

Observe that the recurrence in (15) gives rise to the expansion

r(h, n, s) =
∑

(mh,mh+1,...)�n
c(h,mh, s)c(h + 1,mh+1, s + mh · 2h)

× c(h + 2,mh+2, s + mh · 2h + mh+1 · 2h+1) · · ·

where the sum is over binary partitions of n but the indexing is shifted so mh is the 
number of parts of size 1. Thus,

t̃n =
n∑

m=0
(n−m) even

c(0,m, 0) r

(
1, n−m

2 ,m

)
= r(0, n, 0)

which completes the proof since f2(n) = (2n − 1)2. �
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We can extend the functions above to count tangled chains:

fk(s) := (2s− 1)k, (20)

ck(h,m, s) :=
m∏
j=1

fk(s + j · 2h)
j · 2h , (21)

and

rk(h, n, s) :=
n∑

m=0
(n−m) even

ck(h,m, s) r

(
h + 1, n−m

2 , s + m2h
)

(22)

with base cases

ck(h, 0, s) = rk(h, 0, s) = 1. (23)

Then a proof very similar to the case k = 2 also proves the following statement.

Corollary 10. For n ≥ 1, the number of tangled chains of length k is

rk(0, n, 0)
fk(n)

which can be computed recursively using (22).

7. Final remarks

7.1. Generating functions

It is known (and easy to prove) that the ordinary generating function for inequivalent 
trees satisfies the functional equation

B(x) = x + 1
2
(
B(x)2 + B(x2)

)
.

This is, of course, equivalent to a recurrence for the sequence bn. Given that in this 
paper we prove both explicit formulas and recurrences for the numbers of tanglegrams 
and tangled chains, it makes sense to ask the following.

Question 1. Does there exist a closed form or a functional equation for the generating 
function of tanglegrams or tangled chains?
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7.2. Number of cherries and other subtrees

Cherries play an important role in the literature on tanglegrams. For example, 
Charleston’s analysis [3, pp. 325–326] suggests the following question.

Question 2. What is the expected number of matched cherries in a random tanglegram?

Computer experiments with random tanglegram generation suggest that the following 
is true.

Conjecture 1. The expected number of cherries in the left tree in a random tanglegram 
converges to n/4.

Conjecture 2. The expected number of copies of the tree T in the left tree of a random 
tanglegram of size n is asymptotically equal to 2−(l+k−1)n, where l is the number of leaves 
of T and k is the number of symmetries of T , i.e. vertices with identical subtrees.

Assuming the conjecture, for every tree T with l leaves and k symmetries, the number 
of copies of the tree with T as left and as right subtree in the left tree of a randomly 
chosen tanglegram asymptotically equals 2−(2l+(2k+1)−1)n = 4−(l+k)n. So that would 
imply the following.

Conjecture 3. Let T ′ ∈ Bn be the left tree of a tanglegram chosen uniformly at random. 
The expected number of generators of A(T ′) is asymptotically equal to

( ∑
T∈Bn

1
4l(T )+k(T )

)
n.

It is not hard to see that the sum in the conjecture equals f(1
4 )n, where f(x) is the 

function defined by f(0) = 0 and f(x) = x + 1
2f(x)2 + (x − 1

2 )f(x2), or explicitly

f(x) = 1 −

√√√√1 − 2x + (1 − 2x)
(

1 −
√

1 − 2x2 + (1 − 2x2)
(
1 −

√
1 − 2x4 + · · ·

))
.

Note that the computation of f(1
4 ) = 0.27104169360883278703... converges very 

rapidly: the number of correct digits roughly doubles after each step.

Remark. Based on a preprint version of this paper, all these conjectures were proved 
in [19] by Wagner and the second author. The main result in that paper is the more 
general statement that the two halves of a random tanglegram essentially look like two 
independently chosen random plane binary trees.

In a related development, Czabarka, Székely, and Wagner proved some results involv-
ing the crossing number of large random tanglegrams [6].
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7.3. Connection with symmetric functions

The main theorems suggest that symmetric functions might be at play; note, for 
example, the similarity with the formula hn =

∑
λ z

−1
λ pλ, where hn is the homogeneous 

symmetric function, pλ the power sum symmetric function, and the sum is over all 
partitions of n.

Question 3. Is there a connection between tanglegrams (or more generally tangled chains) 
and symmetric functions?

Remark. Based on a preprint version of this paper, Ira Gessel pointed out that there is 
indeed a connection between symmetric functions and the enumeration of the ordered 
and unordered tanglegrams based on the theory of species. He has beautifully spelled out 
this connection. This approach leads to a simple formula for the number of unordered 
tanglegrams and a generating function for the number of unrooted tanglegrams along 
with several other variations on tanglegrams [13].

7.4. Variants on tanglegrams

Tanglegrams as described here fit in a set of more general setting of pairs of graphs 
with a bijection between certain subsets of the vertices (more completely described and 
motivated in [20]). One can also consider unordered tanglegrams by identifying (T, v, S)
with (S, v−1, T ). For example, the 4th and 5th tanglegrams in Fig. 2 are equivalent as 
unordered tanglegrams, and so are the 8th and 10th. From this picture, the reader can 
verify that there are 10 unordered tanglegrams of size 4.

Because of reversibility assumptions for the continuous time Markov mutation models 
commonly used to reconstruct phylogenetic trees, unrooted trees are the most common 
output of phylogenetic inference algorithms. Thus another variant of tanglegrams in-
volves using unrooted trees in place of rooted ones. The motivation for studying these 
variants comes from noting that many problems in computational phylogenetics such as 
distance calculation between trees [1] “factor” through a problem on tanglegrams.

Question 4. Is there a nice formula for the number of

• unordered binary rooted tanglegrams,
• ordered binary unrooted tanglegrams, or
• unordered binary unrooted tanglegrams?

These counts have been found up to 9 leaves (Table 1) by direct enumeration of double 
cosets [20]. Note that Gessel [13] has made significant progress on all of these questions 
using the theory of species, but explicit formulas are still not known.

The third, fourth and fifth column of Table 1 are sequences A259114, A259115 and 
A259116, respectively, from [21].
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Table 1
The number of tanglegrams of various types up to 9 leaves.

Leaves Rooted ord. Rooted unord. Unrooted ord. Unrooted unord.
1 1 1 1 1
2 1 1 1 1
3 2 2 1 1
4 13 10 2 2
5 114 69 4 4
6 1509 807 31 22
7 25595 13048 243 145
8 535753 269221 3532 1875
9 13305590 6660455 62810 31929

7.5. Alternative proof of the main theorem

Ira Gessel [12] pointed out that up to Proposition 4, our main theorem can be proved 
using Pólya theory. Recently, Eric Fusy [11] gave a combinatorial proof of Proposition 4, 
which also yields a remarkable simplification of the random sampler for tangled chains.
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