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Abstract

Phylogenetics has seen a steady increase in data set size and substitution model complexity, which require increasing
amounts of computational power to compute likelihoods. This motivates strategies to approximate the likelihood
functions for branch length optimization and Bayesian sampling. In this article, we develop an approximation to the
1D likelihood function as parametrized by a single branch length. Our method uses a four-parameter surrogate function
abstracted from the simplest phylogenetic likelihood function, the binary symmetric model. We show that it offers a
surrogate that can be fit over a variety of branch lengths, that it is applicable to a wide variety of models and trees, and
that it can be used effectively as a proposal mechanism for Bayesian sampling. The method is implemented as a stand-
alone open-source C library for calling from phylogenetics algorithms; it has proven essential for good performance of our
online phylogenetic algorithm sts.
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Introduction
With improved technology, molecular sequence data sets are
becoming larger. At the same time, phylogenetic substitution
models are becoming more realistic and consequently, more
complex (Lartillot and Philippe 2004; Zoller and Schneider
2012; Groussin et al. 2013; Wang et al. 2014). This combina-
tion motivates research into useful approximations to the
phylogenetic likelihood function.

One simple opportunity for efficiency improvement is in
optimization of, or sampling from, the likelihood function as
parametrized by a single branch length while fixing other
parameters. In this case the likelihood function is simply a
function that takes a nonnegative real input and gives out
another real number. One common approach for numerical
maximization of such functions ‘ is to sample an ‘ at a
number of points, fit a simple curve to those points, and
then use the fit as an approximation to ‘. We will call ‘ the
original function and the fitted function the surrogate function.
Such an approach is useful if the original function is expensive
to evaluate, but the surrogate function can be quickly fit to
the sample points and evaluated. It is already being used
implicitly in phylogenetics by inference programs that use
Brent’s method (Brent 1973) for likelihood maximization, a
method which effectively uses linear interpolation via the
secant method. Recent work by (Aberer et al. 2016) shows
that proposals built using common probability distribution
functions (PDFs) as surrogates, in particular the C distribu-
tion, can have high acceptance rates. Bayesian statistics in
general has benefited from the use of likelihood function

approximations, such as for variational analysis (Wainwright
and Jordan 2008).

Although existing functions can provide useful surrogates
in phylogenetics, one might desire a class of surrogate func-
tions that is specialized to the task. Indeed, phylogenetic like-
lihood functions parameterized by a single branch length
have special characteristics: they asymptote at a nonzero
value as the branch length becomes long, and sometimes
achieve infinite slope as the branch length becomes short.
Neither of these features can be true for any polynomial, and
the first characteristic is not true for any PDF.

In this article, we show that a slight generalization of the
likelihood function for the binary symmetric model (BSM) on a
two-taxon tree can serve as a useful surrogate function for
likelihood functions parameterized by branch lengths. We
call this surrogate the lcfit function, short for “likelihood curve
fit.” With only four parameters, it can be easily and efficiently fit
in a least-squares sense with standard algorithms; even more
robust fitting can be achieved using the ML branch length and
corresponding second derivative. We show via experiments
with simulated and real data that it is readily fit and does a
good job of approximating even complex models, making it a
useful tool when those models are expensive to evaluate. Our
code to use lcfit is available as an open-source C library.

Results

Surrogate Formula and Fitting
The lcfit surrogate function f(c, m, r, b; t) evaluated at branch
length t� 0 is
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c log ½ð1þ e�rðtþbÞÞ=2� þm log ½ð1� e�rðtþbÞÞ=2� (1)

for any positive values of the lcfit coefficients c, m, r, and
nonnegative b. It can be considered as an abstract surrogate
function that takes a set of shapes resembling those of phy-
logenetic likelihood curves (fig. 1). However, when b is zero
this function is the log likelihood function for the BSM (see,
e.g., Semple and Steel 2003) where c is the number of con-
stant sites, m is the number of substituted sites, and r is the
substitution rate. The inclusion of the b term simply serves to
truncate the likelihood function on the left, which is helpful in
fitting likelihood functions for trees with more than two taxa.
Indeed, without truncation the limit of f as branch lengths go
to 0 is always negative infinity; this does not typically make for
a good fit to likelihood functions parameterized by branches
of nontrivial phylogenetic trees. As the branch length
becomes long, f approaches an asymptote of
�ðcþmÞ log ð2Þ.

We will assume that r> 0 and b� 0, so that e�r(tþb) as a
function of nonnegative t goes from some positive value
down to zero. The maximum of the log likelihood function
for this setting is

t0 ¼ �bþ log ½ðcþmÞ=ðc�mÞ�=r: (2)

This has a finite real solution exactly when c>m. In the
BSM interpretation this means that the number of constant
sites strictly exceeds the number of substituted sites. Other
characteristics of the lcfit function f are easily derived, such as
the second derivative at the maximum, and the inflection
point when it exists (see Supplementary Material online).
Using such formulas we have found it useful in some cases
to reparameterize f in terms of the original c, m, f’s maximum
t0, and the second derivative at this maximum value f 00ðt0Þ.

Briefly, our fitting methods combine two strategies to fit
the parameters of the lcfit function. Both use least-squares
fitting of sampled branch lengths and their likelihoods. The
first strategy (lcfit2) applies when the maximum likelihood
branch length is positive, and uses the second derivative at
this branch length to eliminate two parameters so that only
two parameters need to be fit. The second strategy (lcfit4)
simply fits the lcfit parameters using least-squares directly.

We can simply multiply an lcfit curve by a branch length
prior to get an approximate (unnormalized) PDF. For sam-
pling from this PDF we have used a simple rejection sampling
strategy with an exponential proposal distribution. Although
this may require many proposals for an acceptance for certain
lcfit shapes, individual lcfit evaluations are computationally
cheap so we have not found this to be a significant burden in
practice. Adaptive rejection sampling (Gilks and Wild 1992)
would provide a more efficient alternative.

Our C library with unit tests, continuous testing, simulation
framework, and manual is at https://github.com/matsengrp/lcfit,
last accessed October 1, 2017.

Performance
We obtain slightly better results than Aberer et al. (2016) in
terms of acceptance rate for branch length proposals using
their benchmarking strategy (fig. 2). Briefly, we reused their

acceptance rate results for their C and Weibull proposals and
used the same trees and likelihoods to compute the lcfit
surrogate function (see Supplementary Methods,
Supplementary Material online). In terms of computational
time, both our method and the method of Aberer et al.
(2016) require the maximum of the likelihood function to
be found, along with the second derivative. This computa-
tional effort dominates the required effort, and thus they
require approximately equal amounts of computation.

We then performed simulation to explore how well the
lcfit surrogate fits a broader range of models. To do so, we
simulated data under a variety of models, and fit lcfit to the
resulting likelihood curves under the same models. We quan-
tified the difference between the two curves using the
Kullback–Leibler (KL) divergence from the surrogate function
to the likelihood, specifically by computing each for a dense
collection of points in a range enclosing the maximum of the
likelihood function then normalizing to get a probability dis-
tribution for each (details in Supplementary Methods,
Supplementary Material online). We found that KL diver-
gence for complex models is similar to KL divergence for
data simulated under binary model (fig. 3). We were surprised
that lcfit performance by this metric was worse for variants of
the binary model (e.g., the nonsymmetric binary model or a
mixture of rates) than for some complex models.

Discussion
In this article, we present lcfit, the first surrogate function
specialized to the case of 1D phylogenetic likelihood func-
tions. Our work shares goals with those of (Aberer et al. 2016),
however there are several aspects of our framework that
make it appealing. This previous work uses several standard
probability distributions as surrogate functions for posteriors.
In particular, they fit normal, lognormal, Weibull, and C dis-
tributions to approximate per-branch posterior distributions
in order to obtain efficient proposals. With the best perform-
ing of these distributions (typically C) they obtain high ac-
ceptance rates. However, there are inherent limitations to
using standard distributions for this application. For example,
the C and Weibull have two different shapes, depending on if
their shape parameter is greater and less than one; when the
shape parameter is greater than one, the value at zero is zero,
and when it is less than one then the first derivative at zero is
negative. Neither of these need hold for phylogenetic likeli-
hood curves or posteriors. Indeed, likelihood curves for inter-
nal branches are typically nonzero at zero and have a nonzero
modes, for example, see fig. 1c of Aberer et al. (2016). The
truncated normal can take this shape, but its symmetry
makes it a bad choice in this setting (supplementary fig.
S2a, Supplementary Material online). In addition, lcfit
matches real per-branch likelihoods by enabling a nonzero
asymptote, whereas the (Aberer et al. 2016) surrogates are all
zero at infinity.

In addition to theoretical advantages of the lcfit frame-
work, there are several practical advantages. (Aberer et al.
2016) develop a fitting procedure using a linear relationship
between the second derivative of the likelihood function and
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the standard deviation of the posterior density of the
branch length. However, to use this relationship the
parameters of this linear relationship must be inferred.
Because it is inefficient to infer these parameters on the
fly, (Aberer et al. 2016) use consensus values and a some-
what complex tuning procedure; here in most cases we
simply fit two coefficients using standard least-squares
methods. In addition, lcfit is implemented as a stand-
alone library for incorporation into other software,
whereas the independence sampler of (Aberer et al.
2016) is baked into ExaBayes (Aberer et al. 2014).

We have found lcfit to be essential for an efficient im-
plementation (Fourment et al. 2017) of Online
Phylogenetic Sequential Monte Carlo (Dinh et al. 2016).
This Sequential Monte Carlo sampling procedure updates
a Bayesian phylogenetic posterior given an additional se-
quence to include. To do so, it must propose attachment
branch lengths for the new sequence onto the backbone of
a tree from the original posterior. We have observed that
the effective sample size (ESS) of the particle ensemble
generated using lcfit is on an average 7 times higher than
a naı̈ve proposal that simply draws from the prior

FIG. 1. How each of the four parameters changes the shape of our surrogate function f defined in equation (1).
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(supplementary fig. S3, Supplementary Material online).
Although lcfit requires additional computation to approx-
imate the posterior distribution of branches, this proposal
has significantly higher ESS per unit of time relative to the
naı̈ve proposal (supplementary fig. S4, Supplementary
Material online).

This work on online phylogenetics also points the way to
needed extensions. Here, we have focused on approximating
phylogenetic likelihood as a function of a single branch length
at a time, but one could similarly concoct surrogate functions
for other low-dimensional settings. For example, one could
develop a surrogate function for three branch lengths around
an internal node using the BSM likelihood function for a three
taxon tree, or consider branch length changes and nearest-
neighbor interchange moves simultaneously by using a

surrogate function based on the BSM likelihood function
for a four taxon tree.

Supplementary Material
Supplementary methods and data are available at Molecular
Biology and Evolution online.
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FIG. 2. Expected acceptance rate for maximum-likelihood fits of gamma, Weibull, and lcfit distributions versus coefficient of variation of sampled
single-branch-length posterior distributions for 12 data sets tested by (Aberer et al. 2016). Fit parameters for the gamma and Weibull distributions
were obtained directly from data provided by (Aberer et al. 2016); those results reproduced here for comparison to lcfit.

a) b)

FIG. 3. Estimated Kullback–Leibler divergence from the original likelihood function to the surrogate function. Simulations done using (a) uniform
rates across sites and (b) discretized Gamma distributed rates across sites (4 categories, a¼ 0.2). Branch lengths are either drawn from an
exponential with mean either l¼ 0.1 or l¼ 0.01. See supplementary table S1 in Supplementary Material online for a list of model name
abbreviations.
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