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CONSISTENCY AND CONVERGENCE RATE OF PHYLOGENETIC
INFERENCE VIA REGULARIZATION2
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Fred Hutchinson Cancer Research Center∗ and University of California, Los
Angeles†

It is common in phylogenetics to have some, perhaps partial, informa-
tion about the overall evolutionary tree of a group of organisms and wish to
find an evolutionary tree of a specific gene for those organisms. There may
not be enough information in the gene sequences alone to accurately recon-
struct the correct “gene tree.” Although the gene tree may deviate from the
“species tree” due to a variety of genetic processes, in the absence of evi-
dence to the contrary it is parsimonious to assume that they agree. A com-
mon statistical approach in these situations is to develop a likelihood penalty
to incorporate such additional information. Recent studies using simulation
and empirical data suggest that a likelihood penalty quantifying concordance
with a species tree can significantly improve the accuracy of gene tree re-
construction compared to using sequence data alone. However, the consis-
tency of such an approach has not yet been established, nor have conver-
gence rates been bounded. Because phylogenetics is a nonstandard inference
problem, the standard theory does not apply. In this paper, we propose a pe-
nalized maximum likelihood estimator for gene tree reconstruction, where
the penalty is the square of the Billera–Holmes–Vogtmann geodesic distance
from the gene tree to the species tree. We prove that this method is consistent,
and derive its convergence rate for estimating the discrete gene tree structure
and continuous edge lengths (representing the amount of evolution that has
occurred on that branch) simultaneously. We find that the regularized estima-
tor is “adaptive fast converging,” meaning that it can reconstruct all edges of
length greater than any given threshold from gene sequences of polynomial
length. Our method does not require the species tree to be known exactly; in
fact, our asymptotic theory holds for any such guide tree.
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1. Introduction. Molecular phylogenetics is the reconstruction of evolution-
ary history from molecular sequences, typically DNA sampled from the present
day. One common means of performing molecular phylogenetics is likelihood-
based “gene tree analysis,” in which the molecular sequence of a gene is as-
sumed to evolve according to a continuous time Markov chain (CTMC) along the
branches of an unknown phylogenetic tree. The likelihood function corresponding
to this CTMC is then used as the sole criterion to choose the “best” tree.

However, sometimes there is insufficient signal in the gene sequences to deliver
a confident estimate. This may happen because of strong genetic conservation, in-
sufficient evolutionary time, short sequences or other processes obscuring the tree
signal. Insufficient signal, in turn, results in an error-prone high variance estimator
in which small modifications of the input data can result in rather different inferred
trees.

The introduction of an additional penalty parameter in the optimality function
through regularization is a common statistical response to such ill-posed problems.
This penalty parameter can introduce extra information into the problem, result-
ing in a lower variance estimator which in many cases can be shown to be an
improvement over the raw estimator. Regularization-type strategies have made a
recent appearance in phylogenetics, via the fact that gene trees evolve within an
organism-level species tree. The gene tree history may differ from a species tree
due to processes such as gene duplications, losses and horizontal gene transfer;
however, despite these processes there is significant signal bringing the various
gene trees together to their shared species tree [Boussau and Daubin (2010)].

Phylogenetic regularization has been implemented using two approaches thus
far. The model-based approach to phylogenetic regularization works to model the
entire process of gene and species tree development, resulting in a comprehensive
joint likelihood function for an ensemble of gene trees, either conditioning on a
species tree or including it as part of the joint likelihood function [Åkerborg et al.
(2009), Boussau et al. (2013), Heled and Drummond (2010), Liu and Pearl (2007),
Rasmussen and Kellis (2011), Mahmudi et al. (2013), Szöllősi et al. (2015)]. Con-
sistency of such approaches is a matter of continuing research [Roch and Warnow
(2015)]. Another approach is to use a penalty function describing the level of di-
vergence of a given gene tree from a prespecified species tree [Bansal et al. (2015),
David and Alm (2011), Scornavacca, Jacox and Szöllősi (2015), Wu et al. (2013)],
an approach more typical of the regularization approaches common in statistics
and machine learning. A relatively simple penalization approach can give perfor-
mance competitive with inference under a full probabilistic model at a substantially
smaller computational cost [Wu et al. (2013)].

In another direction, probabilists have built a powerful theory showing consis-
tency of, and describing sequence length requirements for, accurate phylogenetic
inference. For individual gene tree inference without additional information, this
has recently reached a high-water mark with the demonstration that accurate max-
imum likelihood (ML) inference can be done with sequences of length polynomial
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in the number of taxa [Roch and Sly (2017)], which is asymptotically tight given
previous results [Mossel (2003)].

However, we are not aware of any work giving proofs of consistency for penalty-
based methods of gene tree inference, or more generally giving sequence length
requirements for gene tree inference in the presence of a species tree. In addition,
the work that has been done showing polynomial sequence length requirements
for ML inference has reduced the inference problem to a purely combinatorial one
by discretizing branch lengths rather than treating branch lengths as continuous
parameters.

In this paper, we propose a regularization framework for gene tree reconstruc-
tion and prove consistency of our estimation method as sequence length increases
to infinity. Furthermore, we provide the corresponding sequence length require-
ments for accurate estimation. The convergence theory is simultaneously for con-
tinuous branch lengths and tree topology. Our penalty is in terms of distance from
a “guide tree,” often taken as, and in this paper called, the species tree, although
we make no assumptions about how the gene tree was generated from the guide
tree. In fact, the guide tree can be arbitrarily chosen, although of course better gene
tree reconstructions can be expected from species trees closer to the correct gene
tree.

Our penalty is in terms of geodesic distance in the Billera–Holmes–Vogtmann
(BHV) space, which represents the discrete and continuous aspects of phyloge-
netic trees as an ensemble of orthants glued together along their edges [Billera,
Holmes and Vogtmann (2001)]. The discrete changes induced by the geodesic dis-
tance are nearest-neighbor-interchanges between subtrees separated by zero length
branches, modeling horizontal transfer, lineage sorting or deep coalescence and
gene duplication/extinction [Maddison (1997)]. The BHV distance can be com-
puted in polynomial time [Owen (2011)], in contrast with other distances on tree
spaces which are typically NP-hard to compute. BHV space has been previously
used to extend classical statistical methods for phylogenetic inference. For exam-
ple, Nye (2011) proposes an algorithm to identify principal paths in BHV space
analogously to the standard principal component analysis.

Using this framework, we are able to prove that the regularized ML estimator is
consistent, and derive its global error in various settings. Our results show a poly-
nomial sequence length requirement to recover the true topology, which is the best
possible sample complexity of any tree reconstruction methods. Moreover, unlike
most of the previous algorithms that perform poorly on trees with indistinguish-
able edges, the regularized estimator can reconstruct all edges of length greater
than any given threshold. We can also derive a confidence region for the estimator
and use that to assess the support of tree splits from data.

The paper is organized as follows. Section 2 introduces our mathematical frame-
work including the BHV space of phylogenetic trees and the regularized maximum
likelihood estimator for tree reconstruction using geodesic BHV distance. We in-
vestigate properties of the geodesic distance in the BHV space and the likelihood
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in Section 3 and Section 4, respectively. We prove that the regularized maximum
likelihood estimator is consistent and obtain its convergence rate in Section 5. Sec-
tion 6 derives an explicit bound of the convergence rate and provides the sample
complexity of our method to recover the true topology under the Jukes–Cantor
model. We apply our method to reconstruct the gene tree for eight yeast species in
Section 7. Finally, Section 8 discusses our results in the context of related work.

2. Mathematical framework.

2.1. Phylogenetic tree. Throughout this paper, the term phylogenetic tree
refers to a tree T with leaves labeled by a set of taxon (i.e., organism) names.
Phylogeneticists often call these trees unrooted to highlight the undirected nature
of the edges. Let E(T ) denote the edges of T and V (T ) denote the vertices. Any
edge adjacent to a leaf is called a pendant edge, and any other edge is called an
internal edge. Each edge e will be associated with a nonnegative number we called
the branch length. We define the diameter of T as maxu,v∈V (T )

∑
e∈path(u,v) we.

A tree is said to be resolved if it is bifurcating and all branch lengths are positive.
The topological distance dT (u, v) between vertices u and v in a tree is the num-

ber of edges in the path between vertices u and v. For an edge e of T , let T1 and
T2 be the two rooted subtrees of T obtained by deleting edge e from T , and for
i = 1,2, let di(e) be the topological distance from the root of Ti to its nearest leaf
in Ti . The depth of T is defined as maxe max{d1(e), d2(e)}, where e ranges over
all internal edges in T . Given an unrooted phylogenetic tree T on a finite set X of
taxa, any subset Y of X induces a phylogenetic tree on taxon set Y , denoted T |Y ,
which, is the subtree of T that connects the taxa in Y only.

We will also follow the standard independent and identically distributed (IID)
setting for likelihood-based phylogenetics with a finite number of sites [see
Felsenstein (2004), for more details]. Let S denote the set of possible molecu-
lar sequence character states and let r = |S|; for convenience, we assume that the
states have indices 1 to r . We assume that mutation events occur according to a
continuous-time Markov chain (CTMC) on states S . Specifically, the probability
of ending in state y after time t given that the site started in state x is given by
the xyth entry of P(t), where P(t) is the matrix valued function P(t) = eQt , and
the matrix Q is the instantaneous rate matrix of the CTMC evolutionary model.
The branch lengths represent the times t during which the mutation process op-
erates. We assume that the rate matrix Q is reversible with respect to a stationary
distribution π on the set of states S .

To explore the set of all trees with a given number of taxa and to describe trees
that are “near” to each other, we use the class of nearest neighbor interchange
(NNI) moves [Robinson (1971)]. A NNI move is defined as a transformation that
collapses an interior edge to zero and then expands the resulting degree 4 vertex
into an edge and two degree 3 vertices in a new way (see Figure 1). Two trees τ1
and τ2 are said to be NNI-adjacent if there exists a single NNI move that transform
τ1 into τ2.
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FIG. 1. A NNI move collapses an interior edge to zero and then expands the resulting degree 4
vertex into an edge and two degree 3 vertices in a new way.

2.2. BHV space. The BHV space employs a cubical complex as the geometric
model of tree space T on n taxa as follows:

1. T consists of a collection of orthants, each isomorphic to R
2n−3
≥0 .

2. Each orthant itself corresponds uniquely to a tree topology, and the coordi-
nates in each orthant parameterize the branch lengths for the corresponding tree.

3. The adjacent orthants of the complex with the same dimension correspond
to NNI-adjacent trees.

A simple visualization of a part of the BHV space of all trees with 5 taxa is
provided in Figure 2. The BHV space is not a manifold, but it is equipped with

FIG. 2. The BHV space is a cubical complex, where each orthant corresponds uniquely to a tree
topology and the coordinates in each orthant parameterize its branch lengths. Adjacent orthants
represent trees that can be transformed to each other via a single NNI move.
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a natural metric distance: the shortest path lying in the BHV space between the
points. If two points lie in the same orthant, this distance is the usual Euclidean
distance. If two points are in different orthants, they can be joined by a sequence
of straight segments, with each segment lying in a single orthant. We can then
measure the length of the path by adding up the lengths of the segments. The
distance between the two points is defined as the minimum of the lengths of such
segmented paths joining the two points.

A segmented path giving the smallest distance between two points is called a
geodesic. The geodesic connecting any two points in BHV space is unique and
can be computed in polynomial time [Owen (2011)]. The space is clearly locally
compact.

In this paper, beside the BHV geodesic distance itself, we will also consider the
branch-score (BS) distance. This distance was proposed by Kuhner and Felsenstein
(1994) and shown by Amenta et al. (2007) to be an approximation to the BHV dis-
tance. We say that a bipartition or split of V (T ) (into two disjoint subset A,B) is in
the tree T if there is some edge g ∈ E(T ) such that all elements of A lie on one side
of g and all elements of B lie on the other side. The branch-score distance between

two trees T1 and T2 is defined as dBS(T1, T2) =
√∑

e (w1(e) − w2(e))2 where
wi(e) is the length of the corresponding edge if the split e is in the tree Ti , and
wi(e) = 0 otherwise [Kuhner and Felsenstein (1994)]. The branch-score distance
is equivalent to the BHV distance dBS(T1, T2) ≤ dBHV(T1, T2) ≤ √

2dBS(T1, T2),
∀T1, T2 and can be computed in O(n) time [Amenta et al. (2007)].

2.3. Phylogenetic likelihood and the forward operator. For a fixed topology τ ,
vector of branch lengths q and observed sequences Yk = (Y1, Y2, . . . , Yk) in Sn×k

of length k over n taxa, the likelihood of observing Yk given τ and q has the form

Lk(τ, q) =
k∏

s=1

∑
a(s)

( ∏
(u,v)∈E(τ,q)

P uv

a
(s)
u a

(s)
v

(quv)

)
π

(
a(s)
u0

)
,

where a(s) ranges over all extensions of Ys to the internal nodes of the tree, a
(s)
u

denotes the assigned state of node u by a(s), E(τ, q) denotes the set of tree edges,
P uv is the probability transition matrix on edge (u, v) and u0 is an arbitrary inter-
nal node.

We will also denote �k = log(Lk) and refer to it as the log-likelihood function
given the observed sequence. It is known that �k is continuous on T and is smooth
(up to the boundary) on each orthant of T . However, there is no general notion of
differentiability of �k on the whole tree space.

Each tree (τ, q) generates a joint distribution on the single-site patterns at the
leaf nodes, hereafter denoted by Pτ,q . Define the forward operator

F : T → X

(τ, q) 	→ Pτ,q,
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where X denotes the space of all possible single-site distributions on the leaves.
Throughout the paper, we will use the notation KL(P1,P2) for the Kullback–
Leibler divergence of P2 ∈ X from P1 ∈ X. We note that the likelihood function
can be rewritten in term of the forward operator as

Lk(τ, q) =
k∏

s=1

Pτ,q(Ys).

In this paper, we mostly focus on the case when the sequence length k increases
while the number of taxa n is fixed, with the exception of Section 6 where we
quantify the distance between our estimate and the true tree in both k and n. We
will make the following assumptions.

ASSUMPTION 2.1 (Identifiability). Pτ,q = Pτ ′,q ′ ⇔ τ = τ ′ and q = q ′.

ASSUMPTION 2.2. We assume that the data Yk are generated from a true tree
(τ ∗, q∗), a resolved tree with bounded branch lengths: let e, f > 0 be the lower
bound of branch lengths of pendant edges and inner edges, respectively, and g > 0
be the upper bound of all branch lengths. Note that e, f and g may depend on the
number of taxa. We further assume that e and g are known.

From now on, we denote Te,g be the set of all trees for which edge lengths are
bounded from above by g and pendant edge lengths are bounded from below by e.

2.4. Phylogenetic inference via regularization. Given a species tree (τ ◦, q◦)
and regularization parameter αk > 0, the regularized estimator (τ̂k, q̂k) of the tree
is defined as the minimizer of the BHV-penalized phylogenetic likelihood function:

(2.1) (τ̂k, q̂k) := argmin
(τ,q)∈T

−1

k
�k(τ, q) + αkR(τ, q).

Here, R(τ, q) = d((τ, q), (τ ◦, q◦))2 where d(s, s′) denotes the geodesic distance
between the trees s and s′ on the BHV space [Billera, Holmes and Vogtmann
(2001)]. This formulation is analogous to the ridge estimator in the standard lin-
ear regression setting [Hoerl (1962)]. The existence of a minimizer as in (2.1) is
guaranteed by the following lemma.

LEMMA 2.1 (Existence of the estimator). For fixed β > 0 and observed se-
quence Yk , there is a (τ, q) minimizing Zβ,Yk

(τ, q) = −�k(τ, q) + βR(τ, q).

PROOF. Let (τn, qn) be a sequence such that Zβ,Yk
(τn, qn) converges to

inf(τ,q) Zβ,Yk
(τ, q). Note that d((τn, qn), (τ

◦, q◦)) is bounded from above by As-
sumption 2.2, so the sequence lies inside a compact set. We deduce that a sub-
sequence (τm, qm) converges to some (τ ∗, q∗) ∈ T . Since the likelihood and the
penalty R are continuous, we deduce that (τ ∗, q∗) is a minimizer of Zβ,Yk

. �
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3. Properties of the regularization penalty. In this section, we investigate
the analytical properties of the penalty in our regularization problem. We recall
the definition of a strongly convex distance on a geodesic space.

DEFINITION 3.1 (Strongly convex distance). A distance d on a space X is
strongly convex if for any geodesic γ : [0,1] → X , x ∈ X and t ∈ [0,1], we have
d(x, γ (t))2 ≤ (1 − t)d(x, γ (0))2 + td(x, γ (1))2 − t (1 − t)d(γ (0), γ (1))2.

We have the following lemma about the convexity of the aforementioned dis-
tances.

LEMMA 3.1. The BHV geodesic distance is strongly convex on the whole tree
space.

PROOF. It is known that the BHV space with its distance is a CAT(0)
space [Billera, Holmes and Vogtmann (2001)]. Standard results about distance
on CAT(0) spaces [e.g., see Bačák (2013, 2014)] imply strong convexity of the
geodesic distance. �

Recall that in our formulation, R(τ, q) = d((τ, q), (τ ◦, q◦))2. Letting x◦ :=
(τ ◦, q◦) denote our species tree with branch lengths, we note that R(x) is locally
Lipschitz by two applications of the triangle inequality:

(3.1)

∣∣R(y) − R(x)
∣∣ = ∣∣d(

y, x◦) − d
(
x, x◦)∣∣(d(

y, x◦) + d
(
x, x◦))

≤ d(y, x)
(
d(y, x) + 2d

(
x, x◦)).

We will use the notation γx,y(t), t ∈ (0,1) to denote the linear parameterization of
the geodesic going from x to y in T . Thus

d
(
x, γx,y(t)

) = td(x, y), and d
(
y, γx,y(t)

) = (1 − t)d(x, y).

The following lemma describes a directional derivative ω of R along geodesics,
as well as a function D that will be useful later on for analyzing convergence
properties of the regularization term.

LEMMA 3.2. Define

ω(x, y) := lim
t→0+

R(γx,y(t)) − R(x)

t
∀x, y ∈ T , and

D(x,y) := R(y) − R(x) − ω(x, y).

Then:

1. ω(x, y) is well defined.
2. For any x ∈ T , |ω(x, y)| ≤ 2d(x, x◦)d(x, y) ∀y ∈ T .
3. For all x, y ∈ T , D(x,y) ≥ d(x, y)2.
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PROOF. 1. For any x, y ∈ T , we recall that the geodesic between x and y is
composed of straight segments. Consider the function

g(t) = R(γx,y(t)) − R(x)

t
, t ∈ (0,1).

Let λ ∈ (0,1). By convexity of R, we have

R
(
γx,y(λt)

) = R
(
γx,γx,y(t)(λ)

) ≤ (1 − λ)R(x) + λR
(
γx,y(t)

)
.

This implies that

g(λt) = R(γx,y(λt)) − R(x)

λt
≤ R(γx,y(t)) − R(x)

t
= g(t).

Hence, g(t) decreases as t ↓ 0. Since R is locally Lipschitz, we also have that g(t)

is bounded. Thus the limit of g(t) as t ↓ 0 exists and ω(x, y) is well defined.
2. By (3.1), we have

∣∣ω(x, y)
∣∣ ≤ lim

t→0+
|R(γx,y(t)) − R(x)|

t

≤ lim
t→0+

(td(x, y) + 2d(x, x◦))td(x, y)

t
= 2d

(
x, x◦)d(x, y).

3. Lemma 3.1 also implies

R(γx,y(t)) − R(x)

t
≤ R(y) − R(x) − (1 − t)d(x, y)2.

By letting t go to 0, we obtain R(y) − R(x) − ω(x, y) ≥ d(x, y)2. �

4. Properties of the likelihood. Next, we investigate properties of an “ex-
pected per-site log likelihood”

φ(τ, q) := Eψ∼P(τ∗,q∗)
[
logPτ,q(ψ)

]
and construct probabilistic bounds on deviation of the empirical average per-site
log likelihood from this expected quantity; these bounds are uniform over Te,g .
Recalling Assumption 2.2, we have the following lemma.

LEMMA 4.1 (Limit likelihood). (τ ∗, q∗) is the unique maximizer of φ, and
�k(τ, q|Yk)/k → φ(τ, q), ∀(τ, q) ∈ T .

PROOF. Note that the sequences Yk are IID samples of P(τ ∗, q∗). By the
strong law of large numbers,

1

k
�k(τ, q|Yk) = 1

k

k∑
i=1

logPτ,q(Yi) −→ φ(τ, q),
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for all (τ, q) ∈ T . Moreover,

φ(τ, q) − φ
(
τ ∗, q∗) = Eψ∼P(τ∗,q∗)

[
logPτ,q(ψ) − logPτ∗,q∗(ψ)

]
= −KL

(
F

(
τ ∗, q∗)

,F (τ, q)
) ≤ 0

with equality if and only if Pτ,q = Pτ∗,q∗ . Hence, Assumption 2.1 guarantees that
(τ ∗, q∗) is the unique maximizer of φ. �

Next, we employ the “covering number” technique from machine learning [see,
e.g., Cucker and Smale (2002), Cuong, Ho and Dinh (2013)] to obtain uniform
bounds for the distance between the likelihood and its expected value.

LEMMA 4.2. Let γ be the element of largest magnitude in the rate matrix Q.
There exists a constant C > 0 such that for any k ≥ 3, δ > 0, we have∣∣∣∣1

k
�k(τ, q|Yk) − φ(τ, q)

∣∣∣∣
≤ C

(
log k

k

)1/2(
n2 log

1

δ
+ n3 log(ngγ ) + n4 log

4

λe

)1/2
log

1

λe

for all (τ, q) ∈ Te,g with probability greater than 1 − δ. Here, λe is a constant
depending on e.

PROOF. For every assignment ψ of states to the tree taxa, we have

Pτ,q(ψ) = ∑
a(ψ)

( ∏
(u,v)∈E(τ,q)

P uv
auav

(quv)

)
π(au0),

where a ranges over all extensions of ψ to the internal nodes of the tree. Note that∣∣∣∣∂P (ψ)

∂qi

(q)

∣∣∣∣ ≤ ∑
a(ψ)

( ∏
(u,v)∈E(τ,q)\i

P uv
auav

(quv)

∣∣∣∣∑
s

QausPsav (qi)

∣∣∣∣
)
π(au0) ≤ γ 4n,

where the bound is obtained from the fact that all probability terms are at most 1,
and that the total number of assignments a to the n − 1 inner nodes is 4n−1.

On the other hand, since the lengths of all pendant edges are bounded from
below by e (Assumption 2.2), Pτ,q(ψ) is bounded from below by the probability
of the assignment when we set the value at the internal nodes to be a constant i0,
thus

Pτ,q(ψ) ≥
(
min
t≥0

Pi0i0(t)
)n−3(

min
i

min
t≥e

Pi0i (t)
)n

π(i0).

We define

λe =
(
min
t≥0

Pi0i0(t)
)(n−3)/n(

min
i

min
t≥e

Pi0i (t)
)
π(i0)

1/n.
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By the mean value theorem, we have∣∣logPτ,q(ψ) − logPτ,q ′(ψ)
∣∣ ≤ c1

∥∥q − q ′∥∥ ∀τ, q, q ′,ψ,

where c1 := γ 4n/λn
e , and ‖ · ‖ is the Euclidean distance in R

2n−3. This implies

(4.1)
∣∣∣∣1

k
�k(τ, q|Yk) − 1

k
�k

(
τ, q ′|Yk

)∣∣∣∣ ≤ c1
∥∥q − q ′∥∥

and

(4.2)
∣∣φ(τ, q) − φ

(
τ, q ′)∣∣ ≤ c1

∥∥q − q ′∥∥
for all τ, q, q ′.

For each (τ, q) ∈ T , define the events

A(τ, q, k, ε) =
{∣∣∣∣1

k
�k(τ, q|Yk) − φ(τ, q)

∣∣∣∣ > ε

}

and

B(τ, q, k, ε)

=
{
∃q ′ such that

∥∥q ′ − q
∥∥ ≤ ε

2c1
and

∣∣∣∣1

k
�k

(
τ, q ′|Yk

) − φ
(
τ, q ′)∣∣∣∣ > 2ε

}

then we have B(τ, q, k, ε) ⊂ A(τ, q, k, ε) by the triangle inequality, (4.1), and
(4.2). We note that 0 ≥ logPτ,q(ψ) ≥ n logλe, ∀τ, q,ψ . By Hoeffding’s inequality
[Hoeffding (1963)], we have

(4.3) P
[
A(τ, q, k, ε)

] ≤ 2 exp
( −2ε2k

n2(logλe)2

)
.

Note that the total number of balls of radius ε/2c1 required to cover [0, g]2n−3 is
bounded above by

(4.4)
(

2gc1

ε

)2n−3
(2n − 3)!! =

(
2gc1

ε

)2n−3
eO(n logn).

We deduce that for some c2 > 0,

P

[
∃(τ, q) ∈ Te,g :

∣∣∣∣1

k
�k(τ, q|Yk) − φ(τ, q)

∣∣∣∣ > 2ε

]

≤ 2 exp
( −2ε2k

n2(logλe)2

)(
2gc1

ε

)2n−3
ec2n logn.

To make the left-hand side less than δ, we need

log(2) + (2n − 3) log(2gc1) + c2n logn + log
1

δ

≤ 2ε2k

n2(logλe)2 − (2n − 3) log
1

ε
.
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We will choose ε such that

ε2k

n2(logλe)2 ≥ log(2) + (2n − 3) log(2gc1) + c2n logn + log
1

δ

and ε2k/[n2(logλe)
2] ≥ (2n − 3) log(1/ε), which is valid if we choose

ε = √
2 + c2

√
log k

k

(
n2 log

1

δ
+ n3 log(ngγ ) + n4 log

4

λe

)1/2
log

1

λe

. �

LEMMA 4.3. For any 0 < δ < 1, denote

Cn,δ,γ,e,g = C

(
n2 log

π2

6δ
+ n3 log(ngγ ) + n4 log

4

λe

)1/2
log

1

λe

,

where C is the constant in Lemma 4.2. Then∣∣∣∣1

k
�k(τ, q|Yk) − φ(τ, q)

∣∣∣∣ ≤ Cn,δ,γ,e,g log k√
k

∀(τ, q) ∈ Te,g, k ≥ 3

with probability greater than 1 − δ.

PROOF. Denote

Ak =
{∣∣∣∣1

k
�k(τ, q|Yk) − φ(τ, q)

∣∣∣∣ ≤ Cn,δ/k2,γ,e,g

√
log k

k
,∀(τ, q) ∈ Te,g

}
.

By Lemma 4.2, P(Ac
k) ≤ 6δ/(π2k2) where Ac

k is the complement set of Ak . There-
fore,

(4.5)

P

( ∞⋂
k=3

Ak

)
= 1 − P

( ∞⋃
k=3

Ac
k

)
≥ 1 −

∞∑
k=3

P
(
Ac

k

)

≥ 1 −
∞∑

k=3

6δ

π2k2 = 1 − δ.
�

5. Asymptotic theory of the regularized estimator.

5.1. Consistency.

THEOREM 5.1 (Consistency). Assume that the sequences Yk are generated
from a tree (τ ∗, q∗) ∈ Te and that

αk → 0 and αk = �

(
logk√

k

)
.

Then (τ̂k, q̂k) converges to (τ ∗, q∗) almost surely.
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PROOF. From the definition of (τ̂k, q̂k), we have

−1

k
�(τ̂k, q̂k|Yk) + αkR(τ̂k, q̂k) ≤ −1

k
�
(
τ ∗, q∗|Yk

) + αkR
(
τ ∗, q∗)

,

which implies that

αkR(τ̂k, q̂k) ≤ −1

k
�
(
τ ∗, q∗|Yk

) + φ
(
τ ∗, q∗) − φ

(
τ ∗, q∗)

+ φ(τ̂k, q̂k) − φ(τ̂k, q̂k) + 1

k
�(τ̂k, q̂k|Yk) + αkR

(
τ ∗, q∗)

.

By Lemma 4.3, with probability greater than 1 − δ,

(5.1)

αkR(τ̂k, q̂k) ≤ −φ
(
τ ∗, q∗) + φ(τ̂k, q̂k) + 2Cn,δ,γ,e,g logk√

k
+ αkR

(
τ ∗, q∗)

≤ 2Cn,δ,γ,e,g log k√
k

+ αkR
(
τ ∗, q∗)

, ∀k ∈ N

since (τ ∗, q∗) is the maximizer of φ (Lemma 4.1).
Therefore, again with probability greater than 1 − δ,

(5.2) 0 ≤ R(τ̂k, q̂k) ≤ 2Cn,δ,γ,e,g log k

αk

√
k

+ R
(
τ ∗, q∗)

, ∀k ∈N.

We also deduce from the first inequality of equation (5.1) that

lim
k→∞

∣∣φ(τ̂k, q̂k) − φ
(
τ ∗, q∗)∣∣ = 0.

By the assumption on αk , the right-hand side of (5.2) is bounded above. Thus
the sequence {(τ̂k, q̂k)} lies inside a compact set, and there is a subsequence
{(τkm, qkm)} which converges to some (τ ′, q ′) ∈ T . The continuity of the like-
lihood function implies that φ(τ ′, q ′) = φ(τ ∗, q∗). By Lemma 4.1, we deduce
that (τ ′, q ′) = (τ ∗, q∗). We can repeat this argument for every subsequence of
{(τ̂k, q̂k)} and deduce that

(5.3) lim
k→∞ (τ̂k, q̂k) = (

τ ∗, q∗)
.

Because (5.3) holds with probability larger than 1 − δ and δ can be arbitrarily
small, we deduce that (5.3) holds almost surely. �

Equation (5.1) gives us the following corollary.

COROLLARY 5.1. There exists Cn,δ,γ,e,g > 0 such that with probability larger
than 1 − δ,

φ
(
τ ∗, q∗)−φ(τ̂k, q̂k)+αkR(τ̂k, q̂k) ≤ Cn,δ,γ,e,g logk√

k
+αkR

(
τ ∗, q∗)

, ∀k ∈ N.
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5.2. Convergence rate. While regularized estimators are consistent in general,
it is well known that without any a priori information, their convergence can be
arbitrarily slow [Hofmann and Yamamoto (2010), Kazimierski (2010)]. Uniform
error bounds necessarily require further regularity assumptions on the (asymp-
totic) minimizing solution x∗ = (τ ∗, q∗), that is, the data source [Engl, Hanke
and Neubauer (1996)]. Such conditions are referred to as source conditions and
have played a central role in analyses of convergence of regularized estimators in
various settings. In recent publications, starting with Hofmann et al. (2007), vari-
ational inequalities have become an increasingly popular way to formulate source
conditions, especially in the case of nonsmooth operators [Hohage and Weidling
(2015)]. In this section, we will follow the approach of Hofmann et al. (2007) to
derive such a variational inequality, and from that, to obtain a global error estimate
for our nonsmooth regularization problem.

Denote x = (τ, q) and x∗ = (τ ∗, q∗). For all evolutionary models, φ(x) is an
analytic function on each orthant of Te,g . By the Łojasiewicz inequality [Ji, Kollár
and Shiffman (1992), Theorem 1], under any identifiable evolutionary model there
exists an integer m ≥ 2, a neighborhood U around x∗, and some constant Cn > 0
such that

(5.4) φ
(
x∗) − φ(x) ≥ Cn d

(
x∗, x

)m ∀x ∈ U.

We will also bound d(x∗, x) in an intermediate set, defined by

(5.5) U ′ = {
x : d(

x∗, x
) ≤ 4d

(
x∗, x◦)} \ U,

using ηx∗ = infx∈U ′ (φ(x∗) − φ(x)) = φ(x∗) − supx∈U ′ φ(x) > 0. We will use
these to bound the directional derivative ω of R defined in Lemma 3.2.

LEMMA 5.1 (Variational source condition). There exists β > 0 such that

−ω
(
x∗, x

) ≤ 1

2
D

(
x∗, x

) + β
(
φ

(
x∗) − φ(x)

)1/m ∀x ∈ T .

PROOF. The proof comes from controlling d(x∗, x) in three regimes: in U

using (5.4), when d(x∗, x) is large with Lemma 3.2, and in the intermediate regime
U ′. If U ′ is nonempty, we have

(5.6) φ
(
x∗) − φ(x) ≥ ηx∗

[4d(x∗, x◦)]m d
(
x∗, x

)m
, ∀x ∈ U ′.

Moreover, when d(x, x∗) > 4d(x∗, x◦), we have

(5.7) d
(
x, x∗)

<
1

4d(x∗, x◦)
d
(
x∗, x

)2
.

Combining equations (5.4), (5.6) and (5.7) and using Lemma 3.2, we deduce that
−ω(x∗, x) ≤ 2d(x∗, x◦)d(x∗, x) ≤ D(x∗, x)/2 +β(φ(x∗)−φ(x))1/m where β =
2d(x∗, x◦)max{ 1

C
1/m
n

, 4d(x∗,x◦)
η

1/m

x∗
}. �

This variational inequality enables us to derive the following error estimates.
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THEOREM 5.2 (Global error of regularized estimator). Let xk = (τ̂k, q̂k) be
the minimizer of (2.1) on Te,g . Denote

Cn,δ,γ,e,g,m,x∗,x◦ = √
2
(
Cn,δ,γ,e,g + (m − 1)βm/(m−1)

mm/(m−1)

)1/2
,

where β = 2d(x∗, x◦)max{ 1
C

1/m
n

, 4d(x∗,x◦)
η

1/m

x∗
} and Cn,δ,γ,e,g is the constant in

Lemma 4.3. For any δ > 0, we have

d
(
x∗, xk

) ≤ Cn,δ,γ,e,g,m,x∗,x◦
(

log k

αk

√
k

+ α
1/(m−1)
k

)1/2

with probability greater than 1 − δ.

PROOF. From Corollary 5.1, we note that with probability greater than 1 − δ,
we have

φ
(
x∗) − φ(xk) + αkR(xk) ≤ Cn,δ,γ,e,g log k√

k
+ αkR

(
x∗)

, ∀k ∈ N

which implies

(5.8)

φ
(
x∗) − φ(xk) + αkD

(
x∗, xk

)
≤ Cn,δ,γ,e,g log k√

k
+ αk

(
R

(
x∗) − R(xk) + D

(
x∗, xk

))
, ∀k ∈ N.

By Lemma 5.1, we have

(5.9)
R

(
x∗) − R(xk) + D

(
x∗, xk

)
= −ω

(
x∗, x

) ≤ 1

2
D

(
x∗, xk

) + β
(
φ

(
x∗) − φ(xk)

)1/m
.

Combining (5.8) and (5.9), we obtain

αk

2
D

(
x∗, xk

) ≤ Cn,δ,γ,e,g log k√
k

+ αkβ
(
φ

(
x∗) − φ(xk)

)1/m − (
φ

(
x∗) − φ(xk)

)
.

Denote m = m/(m − 1). Applying Young’s inequality, we get

1

m

((
φ

(
x∗) − φ(xk)

)1/m)m + 1

m

(
αkβ

m

)m

≥ αkβ

m

(
φ

(
x∗) − φ(xk)

)1/m
.

We deduce that

D
(
x∗, xk

) ≤ 2
(

Cn,δ,γ,e,g log k

αk

√
k

+ (m − 1)

αk

(
αkβ

m

)m)

and the proof is complete by another application of Lemma 3.2. �

By choosing αk = k(1−m)/(2m) and applying Theorem 5.2, we have the following
corollary.
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COROLLARY 5.2. For any δ > 0, we have d(x∗, xk) = O((log k)/(
4m
√

k)) with
probability greater than 1 − δ.

Next, we describe a sufficient condition for m achieving its minimum of 2,
which we then show holds everywhere for some simple phylogenetic models. De-
fine the expected Fisher information matrix Iτ (q) by

Iτ (q)ij = −Eψ∼P(τ∗,q∗)

[
∂2

∂qi∂qj

logPτ,q(ψ)

]
.

Since φ is analytic around (τ ∗, q∗) and ∇φ(τ ∗, q∗) = 0, we deduce that around
(τ ∗, q∗),

φ
(
τ ∗, q

) − φ
(
τ ∗, q∗) = −(

q − q∗)t
Iτ∗

(
q∗)(

q − q∗) + o
(∥∥q∗ − q

∥∥2)
.

This gives a sufficient condition for m = 2.

LEMMA 5.2. Assume that the Fisher information matrix Iτ∗(q) is positive-
definite at q∗. Then there exists a neighborhood U around (τ ∗, q∗) and some con-
stant Cn > 0 such that φ(τ ∗, q∗) − φ(τ ∗, q) ≥ Cn‖q∗ − q‖2 ∀(τ ∗, q) ∈ U .

The condition that the Fisher information matrix is positive-definite at q∗ is not
restrictive. Indeed, the matrix I = Iτ∗(q∗) can be rewritten in the form

Iij = E

[(
∂

∂qi

logPτ∗,q∗(ψ)

)(
∂

∂qj

logPτ∗,q∗(ψ)

)]
.

For every nonzero vector u ∈ Rn, we have

∑
ij

uiIijuj = ∑
ij

uiE

[(
∂

∂qi

logPτ∗,q∗(ψ)

)(
∂

∂qj

logPτ∗,q∗(ψ)

)]
uj

= E

[(∑
i

ui

∂

∂qi

logPτ∗,q∗(ψ)

)(∑
j

uj

∂

∂qj

logPτ∗,q∗(ψ)

)]
(5.10)

= E

[(∑
i

ui

∂

∂qi

logPτ∗,q∗(ψ)

)2]
≥ 0

with equality when

(5.11)
∑
i

ui

∂

∂qi

logPτ∗,q∗(ψ) = 0 ∀ψ.

If we consider the mapping

(5.12)
G : � → R

4n

[
G(τ, q)

]
ψ = logPτ,q(ψ).
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on some compact neighborhood � ⊂ T of (τ ∗, q∗) that is contained in the same
orthant as (τ ∗, q∗), then (5.11) implies that each column of the Jacobian of the map
G at q∗ is orthogonal to u. Thus, in this case the Jacobian JG(q∗) is rank-deficient.
Hence, in order to verify the criteria of Lemma 5.2, we just need to prove that
JG(q∗) has full rank. This condition can be verified for various classes of model
including the r-state symmetric models [Semple and Steel (2003)] and the popular
Felsenstein 1984 (F84) model first implemented in the DNAML software program
[Felsenstein (1984)].

LEMMA 5.3 (Information-regularity). The Fisher information matrix Iτ (q)

is everywhere positive-definite for r-state symmetric models (e.g., Jukes–Cantor),
and F84.

PROOF. Wang (2004) proves that Iτ (q) is positive definite for F84. For r-
state symmetric models, we note that G [as defined in (5.12)] is continuous and
injective. This shows that G−1 is well defined and continuous. If G−1 is smooth,
then the Jacobian of G at q∗ has full rank. This can be shown by the following
commutative diagram:

A Hadamard↔ B
�r1 �r2

T G→ Im[G(·)]
where r1 maps (τ, q) to its edge length spectrum Q(τ, q) ∈ A, r2 maps G(τ, q) to
its corresponding sequence spectrum � ∈ B, and the Hadamard-exponential con-
jugation [Felsenstein (2004), Semple and Steel (2003)] provides a smooth conver-
sion between the two spectra. (A detailed description of the Hadamard-exponential
conjugation will be provided in the next section.) We deduce that G−1 is smooth
and the result holds. �

6. Special case: Jukes–Cantor model. In this section, we aim to quantify the
two constants Cn and ηx∗ defined before Lemma 5.1 to derive an explicit bound
on the rate of convergence of the regularized estimator under the Jukes–Cantor
model using Theorem 5.2. From that we will obtain a sequence length bound
to recover the true tree topology. While we provide details for the Jukes–Cantor
model, our results can be generalized to r-state symmetric models. We will take an
information-theoretic perspective, working in terms of KL divergences rather than
the equivalent formulation using differences in the expected per-site log likelihood
function φ.

Without loss of generality, we assume that the substitution rate μ = 1. We recall
that by Lemma 5.3, equation (5.4) holds with m = 2.
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6.1. Convergence rate of the regularized estimator under the Jukes–Cantor
model. Recall that the constants Cn and ηx∗ in Theorem 5.2 are defined in such
a way that KL(Px∗,Px) = φ(x∗) − φ(x) ≥ Cn d(x∗, x)m, ∀x ∈ U , and

ηx∗ = inf
x∈U ′ KL(Px∗,Px) = inf

x∈U ′
(
φ

(
x∗) − φ(x)

) = φ
(
x∗) − sup

x∈U ′
φ(x),

for some neighborhood U around x∗ and U ′ as defined in (5.5).
In order to quantify these constants, we need to derive lower bounds of KL

divergence between the site expected site pattern frequencies of trees. The un-
derlying ideas behind the following somewhat technical proofs can be sketched
as follows. We define U = {x : d(x, x∗) < f } where f denotes the length of the
shortest edge of x∗, and consider two different scenarios:

(i) If x ∈ U , then x has the same topology as x∗. We then prove (in Lemma 6.2)
that we can find four taxa such that the restriction of x∗ and x to these four taxa
induces two quartets s∗ and s of the same topology such that

1

2n − 3
d
(
x∗, x

) ≤ d
(
s∗, s

) ≤ d
(
x∗, x

)
, and KL(Px∗,Px) ≥ KL (Ps∗,Ps)

by which a bound for the 4-taxon case gives a bound for the general case. This
case provides a lower bound for Cn.

(ii) If x ∈ Te,g \ U , we can construct two quartets s∗ and s such that

diam
(
s∗) ≤ 4g log2(n), and d

(
s, s∗) ≥ f/(2n − 3)

which also reduces our bound to the 4-taxon case. The resulting bound on ηx∗ need
not depend on the distance d(x∗, x). Details are provided in Lemma 6.4.

In both cases, a lower bound of KL (Ps∗,Ps) by d(s, s∗) is needed. This bound
is partially derived in Lemma 6.1 under the assumption that the diameters of s∗ and
s are bounded from above. While this assumption works fine for case (i), an upper
bound for diam(s) cannot be derived for case (ii), which prompts us to consider
two different subcases for the value of diam(s) in the proof of Lemma 6.4.

Before proceeding to provide the detailed proofs, we note that a lower bound
of KL (Ps∗,Ps) by d(s, s∗) cannot be obtained without the assumption that the di-
ameters of the quartets are bounded. This can be seen by considering the phyloge-
netic “orange” [Kim (2000), Moulton and Steel (2004)]: the space of all leaf-node
distributions Pτ,q for (τ, q) ∈ T . As sets of branch lengths become large, the cor-
responding point on the orange moves toward the top point of this compact set,
which is that induced by independent samples from the stationary distribution on
states. For that reason, without the bound on the diameter of the trees, one can
easily construct two trees x1 and x2 such that Px1 and Px2 are arbitrarily close and
d(x1, x2) is arbitrarily large, rendering the bound impossible (Figure 3).
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FIG. 3. Visualization of the phylogenetic orange: without the bound on the diameter of the trees,
one can easily construct two trees x1 and x2 such that Px1 and Px2 are arbitrarily close and
dBHV(x1, x2) is arbitrarily large.

6.1.1. Lemmas on quartets. However, when the diameter of quartets is
bounded above, we can use Hadamard conjugation [Hendy and Penny (1993),
Steel, Hendy and Penny (1998), Semple and Steel (2003), Felsenstein (2004)] to
bound KL divergence below in terms of the BHV distance as follows.

LEMMA 6.1. Let Kb be the BHV space of all quartets with diameter bounded
from above by b. We have

KL(Pτ1,q1,Pτ2,q2) ≥ 256e−8bd
(
(τ1, q1), (τ2, q2)

)2

for all (τ1, q1), (τ2, q2) ∈ Kb.

PROOF. First, we recall that the branch length spectrum a of a quartet τ is
defined as

aA =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

qe if e ∈ E(τ) induces the split A|({1,2,3,4} \ A
)
,

− ∑
e∈E(τ)

qe if A = ∅,

0 otherwise,

for any subset A ⊂ {1,2,3}. We will use r1 to denote the invertible map from
a set of branch lengths to the branch length spectrum. The sequence spectrum
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is derived from the vector of single-site patterns at the leaf nodes by summing
the probabilities for site patterns that induce identical splits. The mapping from
an expected site pattern frequency (the image of G) to its sequence spectrum is
an invertible transformation we will call r2 [see Section 2.2.2, Steel, Hendy and
Penny (1998)].

Hadamard exponential conjugation induces the commutative diagram men-
tioned previously:

A Hadamard↔ B
�r1 �r2

Kb
G→ Im[G(·)]

where r1 maps (τ, q) to its edge length spectrum Q(τ, q) ∈ A = Im[r1(·)],
r2 maps G(τ, q) to its corresponding sequence spectrum � ∈ B = Im[r2(·)] and
the Hadamard-exponential conjugation provides a smooth conversion between the
two spectra by the formula

(6.1) a = H−1 log(Hb), and b = H−1 exp(Ha),

where a ∈ A, b ∈ B are vectors of dimension 8, log and exp are applied compo-
nentwise and H is a Hadamard matrix of rank 8 defined as follows:

H1 = [1], Hi+1 =
[
Hi Hi

Hi −Hi

]
, and H = H4.

Hence, if (τ1, q1), (τ2, q2) ∈Kb, then the entries of Ha satisfy

[Ha]i = ∑
j

Hij aj ≥ ∑
j

−|aj | = −2
∑

e∈E(τ)

qe ≥ −4 diam(τ, q) ≥ −4b ∀i.

The first inequality holds because |Hij | = 1 for all i and j .
Note that

(6.2)
‖Hx‖1 ≤ 8‖x‖1, and

∥∥H−1x
∥∥

1 =
∥∥∥∥1

8
Hx

∥∥∥∥
1
≤ ‖x‖1, ∀x ∈ R

8

[Hb]i = exp
([Ha]i) ≥ e−4b ∀i,

where ‖ · ‖1 is the standard L1 norm. From Amenta et al. (2007), we have

d
(
(τ1, q1), (τ2, q2)

) ≤ √
2dBS

(
(τ1, q1), (τ2, q2)

) ≤ √
2‖a1 − a2‖1,

where ‖a1 − a2‖1 denotes the L1 distance between a1 and a2. Thus

d
(
(τ1, q1), (τ2, q2)

) = √
2‖a1 − a2‖1 = √

2
∥∥H−1(

log(Hb1)
) − H−1(

log(Hb2)
)∥∥

1

≤ √
2
∥∥log(Hb1) − log(Hb2)

∥∥
1 ≤ √

2e4b‖Hb1 − Hb2‖1
(6.3)

≤ 8
√

2e4b‖b1 − b2‖1 = 16
√

2e4bdTV(Pτ1,q1,Pτ2,q2)

≤ 16e4b
√

KL(Pτ1,q1,Pτ2,q2),
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where dTV is the total variation distance and the last line is by Pinsker’s inequality.
�

LEMMA 6.2. Let U = {x : d(x, x∗) < f } where f denotes the length of the
shortest edge of x∗:

(i) If x ∈ U , then there exist four taxa such that the restriction of x∗ and x to
these four taxa induces two quartets s∗ and s of the same topology such that

diam
(
s∗) ≤ 4g log2(n) and

1

2n − 3
d
(
x∗, x

) ≤ d
(
s∗, s

) ≤ d
(
x∗, x

)
.

(ii) If x ∈ Te,g \ U , then there exist four taxa such that the restriction of x∗ and
x to these four taxa induces two quartets s∗ and s such that

diam
(
s∗) ≤ 4g log2(n) and f/(2n − 3) ≤ d

(
s, s∗)

.

Moreover, in both cases, we have KL(Px∗,Px) ≥ KL (Ps∗,Ps).

PROOF. (i) It is obvious that x has the same topology as x∗ if x ∈ U . For every
internal edge i, we define a quartet s∗

i by the following procedure: delete i and the
edges touching it to obtain 4 rooted subtrees, then select one leaf that is closest to
the root within each subtree to form the quartet s∗

i . Following the notation of Erdős
et al. (1999), we refer to such a quartet as a representative quartet of the tree x. Let
si be the quartet of tree x formed of the same four leaves. We call si the associated
quartet of s∗

i .
Since x and x∗ have the same topology, s∗

i and si contain the same set of edges.
Moreover, every edge of x∗ belongs to at least one s∗

i . Hence,

d
(
x∗, x

) ≤ ∑
i

d
(
s∗
i , si

)
.

Therefore, there exists a quartet s∗ and its associated quartet s such that

1

2n − 3
d
(
x∗, x

) ≤ d
(
s∗, s

)
.

By the construction, the pendant edge lengths of the representative quartet s∗
are bounded from above by g(depth(x∗) + 1) [Erdős et al. (1999)]. Moreover, we
can bound depth(x∗) above by log2(n) [Erdős et al. (1999), Csurös (2002), Mossel
(2004)]. Hence,

diam
(
s∗) ≤ 2

(
depth

(
x∗) + 1

)
g + g ≤ g

(
2 log2(n) + 3

) ≤ 4g log2(n).

It is worth noting that while our notation of depth of a tree is the same as those
defined in Erdős et al. (1999), Csurös (2002), Mossel (2004), our notation of di-
ameter incorporates branch lengths. Thus g appears in the bound on diam(s∗).

(ii) For every x ∈ T (e, g) \ U , let s∗ and s be constructed as per the previous
case if x has the same topology as x∗. Otherwise, using Lemma 2 in [Erdős et al.
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(1999)], we deduce that there exists a set of four leaves M such that the topologies
of s∗ = x∗|M and s = x|M are different and that s∗ is a representative quartet of the
tree x∗. Using the same arguments as in part (i), we have diam(s∗) ≤ 4g log2(n).

In both scenarios, we can choose s∗ and s such that

diam
(
s∗) ≤ 4g log2(n), and f/(2n − 3) ≤ d

(
s, s∗)

.

Finally, from the “information processing inequality” [see, e.g., Theorem 9 of van
Erven and Harremoës (2014)], we have KL(Px∗,Px) ≥ KL (Ps∗,Ps). �

6.1.2. Convergence rate. Next, we will bound d(x∗, xk) in terms of sequence
length by obtaining values for the constants Cn and ηx∗ . The following lemma
states that we can take Cn = 64n−32g/ log 2−8

√
3f −2.

LEMMA 6.3. Let U = {x : d(x, x∗) < f } where f denotes the length of the
shortest edge of x∗; we have KL(Px∗,Px) ≥ 64n−32g/ log 2−8

√
3f −2d(x∗, x)2, for

all x ∈ U .

PROOF. Since d(s∗, s) ≤ d(x∗, x) ≤ f , we have diam(s) ≤ diam(s∗) + √
3f .

Lemma 6.2 gives quartets s and s∗ with diameter diam(s∗) ≤ 4g log2(n) and

diam(s) ≤ diam
(
s∗) + √

3f ≤ 4g log2(n) + √
3f =: b.

This bound can be rearranged to take the form e−8b ≥ n−32g/ log 2−8
√

3f , which
when combined with Lemmas 6.1 and 6.2 gives

KL(Px∗,Px) ≥ KL (Ps∗,Ps) ≥ 64n−32g/ log 2−8
√

3f −2d
(
x∗, x

)2
. �

Next, we obtain a value for ηx∗ , which bounds KL(Px∗,Px) below in U ′.

LEMMA 6.4. Let U = {x : d(x, x∗) < f } where f denotes the length of the
shortest edge of x∗, we have KL(Px∗,Px) ≥ Cf n−64g/ log 2−2, ∀n ≥ 4 and x ∈
T (e, g) \ U , where Cf = min{64f 2,72[1 − 4−16f/(3 log 2)]2}.

PROOF. If diam(s) ≤ diam(s∗) + 4g log2(n), then both diam(s) and diam(s∗)
are bounded from above by 8g log2(n). Thus

(6.4) KL(Px∗,Px) ≥ KL (Ps∗,Ps) ≥ 64n−64g/ log 2−2f 2

by Lemma 6.1 and Lemma 6.2. If not, there exist two taxa S1 and S2 such that
ι := ιx(S1, S2) > diam(s∗) + 4g log2(n), and ι∗ := ιx∗(S1, S2) ≤ diam(s∗) where
ιx(S1, S2) is the sum of the branch lengths between S1 and S2 on tree x. We have

KL(Px∗,Px) ≥ KL(Px∗|{S1,S2},Px|{S1,S2}) ≥ 2dTV(Px∗|{S1,S2},Px|{S1,S2})
2.
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Under the Jukes–Cantor model,

Px|{S1,S2}(uv) =

⎧⎪⎪⎨
⎪⎪⎩

1

4
+ 3

4
e−4ι/3 if u = v

1

4
− 1

4
e−4ι/3 if u �= v.

Therefore,

(6.5)

dTV(Px∗|{S1,S2},Px|{S1,S2})

= 6
(
e−4ι∗/3 − e−4ι/3)

≥ 6n−16g/(3 log 2)[1 − n−16g/(3 log 2)]
≥ 6n−16g/(3 log 2)[1 − 4−16f/(3 log 2)].

The lemma follows directly from (6.4) and (6.5). �

By Lemma 6.3, Lemma 6.4 and Theorem 5.2, we get the following theorem.

THEOREM 6.1. Let xk = (τ̂k, q̂k) be the minimizer of (2.1) on Te,g . For any
δ > 0,

d
(
x∗, xk

) ≤ √
2
(
Cn,δ,γ,e,g + β2

4

)1/2(
log k

αk

√
k

+ αk

)1/2

with probability greater than 1 − δ, where Cn,δ,γ,e,g is the constant in Lemma 4.3,
Cf is the constant in Lemma 6.4 and

β = max
{

32d
(
x∗, x◦)n16g/ log 2+4

√
3f +1,

8√
Cf

d
(
x∗, x◦)2

n32g/ log 2+1
}
.

If we have a lower bound f for all inner edges, all constants in Theorem 6.1
can be evaluated. Hence, we can construct a conservative confidence region for
the regularized ML estimator. This enables us to assess the support of tree splits
from data. We also note that the term d(x∗, x◦)2 appears in the constants of Theo-
rem 6.1, illustrating the fact that informative prior knowledge (characterized by a
good regularizing tree) makes inference better. On the other hand, since the NNI-
diameter of the tree space is of order O(n logn) [Roch and Sly (2017)], d(x∗, x◦)
is upper bound by (O(gn logn)). This implies that even a horrid regularizing tree
would help stabilizing an estimator globally without greatly affecting the conver-
gence rate.

6.2. Sample complexity for recovering the true tree topology. We can use the
explicit convergence bound to derive a sequence length requirement for recovering
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the true topology. From Theorem 6.1, if the length of the observed sequence k

satisfies

√
2
(
Cn,δ,γ,e,g + β2

4

)1/2(
logk

αk

√
k

+ αk

)1/2
≤ f,

then the topology of reconstructed tree using the regularized estimator is correct
with probability greater than 1 − δ. By choosing αk = k−1/4, we have the follow-
ing.

THEOREM 6.2. For any δ > 0 and 0 < ν < 1/4, if the length of the observed
sequence k satisfies

k ∼
([

1

f 2

(
log

1

λe

)2(
log

4gγ

λeδ

)
n4 + β(n,g,f )2

4f 2

] 4
1−4ν

)
,

where β(n,g,f ) is defined as in Theorem 6.1, then the topology of the recon-
structed tree using the regularized estimator is correct with probability greater
than 1 − δ.

PROOF. The topology of reconstructed tree xk using the regularized estimator
is correct with probability greater than 1 − δ if

(6.6)
(
2/f 2)[

Cn,δ,γ,e,g + (
β2/4

)] ≤ k1/4/(log k + 1).

Moreover, for all 0 < ν < 1/4, there exists Cν such that k1/4/(logk + 1) ≥
Cνk

1
4 −ν . Thus (6.6) holds if

k ≥
[

2

Cνf 2

(
Cn,δ,γ,e,g + β2

4

)] 4
1−4ν

.

This completes the proof. �

When the model parameters (including e and g) and the level of confidence δ

are fixed, the sample complexity to recover the tree topology is thus

k = O
(

nO(g)

f 16/(1−4ν)

)

for any 0 < ν < 1/4. Since our regularized-ML algorithm can reconstruct the
topology from input sequences of length polynomial in the number of terminal
taxa n, it falls in to the class of so-called fast converging tree reconstruction algo-
rithms [Huson, Nettles and Warnow (1999), Warnow, Moret and John (2001)].

Gronau, Moran and Snir (2012) point out that the main drawback of most fast
converging algorithms is that they perform poorly on trees with indistinguish-
able/very short edges whereas a single short edge may affect the ability of the
algorithm to support any other long edges of the generating tree. Such algorithms



PHYLOGENETIC INFERENCE VIA REGULARIZATION 1505

share an “all or nothing” nature: when failing to reconstruct an edge, some of these
algorithms do not return any tree, while others return a tree that may contain many
faulty edges [Huson, Nettles and Warnow (1999), Mossel (2007), Gronau, Moran
and Snir (2012)]. Gronau, Moran and Snir (2012) introduce the concept of the
adaptive fast converging algorithm to refer to those that can reconstruct all edges
of length greater than any given threshold from sequence of polynomial length and
construct the first algorithm with that property. In our case, from Theorem 6.1, we
deduce that if the length k of the observed sequences satisfies

√
2
(
Cn,δ,γ,e,g + β2

4

)1/2(
log k

αk

√
k

+ αk

)1/2
≤ t0,

then any edge of length greater than t0 can be reconstructed by the regularized
estimator with high probability.

This leads to the following theorem, which shows that the regularized estimator
is also adaptive fast-converging.

THEOREM 6.3. For any δ > 0, t0 > 0 and 0 < ν < 1/4, if the length of the
observed sequence k satisfies

k ∼
([

1

t2
0

(
log

1

λe

)2(
log

4gγ

λeδ

)
n4 + β2(n, g, f )

t2
0

] 4
1−4ν

)

then the regularized estimator correctly reconstruct all edges of length greater
than t0 in the true tree (τ ∗, q∗) with probability greater than 1 − δ.

In other words, if the model parameters (including e and g) and the level of
confidence δ are fixed, then the sample complexity to recover all edges of length
greater than t0 is

k = O
(

nO(g)

(t0f )8/(1−4ν)

)

for any 0 < ν < 1/4.

7. Application to yeast gene-tree reconstruction. In this section, we illus-
trate the applicability of our method in practical contexts by using the newly con-
structed estimator to analyze 106 widely distributed orthologous genes from the
genomes of eight yeast species. This data set was originally studied in Rokas et al.
(2003) and later incorporated to the R package phangorn [Schliep (2011)] as a
standard data set for phylogenetic analyses.

The previous results from Rokas et al. (2003) indicate that data sets obtained
from a single gene or by concatenating a small number of genes have a significant
probability of supporting conflicting topologies. By contrast, analyses of the entire
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data set of concatenated genes (by both maximum likelihood and maximum par-
simony) yield a single, fully resolved species tree with high support. Comparable
results were obtained with a concatenation of a minimum of (randomly chosen) 20
genes; substantially more genes than commonly used. One possible explanation
for the success of using randomly chosen concatenated sequences to recover the
species tree and the failure of the use of single-gene to do so is that there might not
be sufficient information in single genes for maximum likelihood (or maximum
parsimony) methods to reliably recover the correct tree.

The analyses from previous sections suggest a regularized maximum likelihood
estimator of the form

(τ̂k, q̂k) := argmin
(τ,q)∈T

−1

k
�k(τ, q) + C

1

k1/4 R(τ, q),

where R(τ, q) = d((τ, q), (τ ◦, q◦))2 and d(s, s′) denotes the BHV distance be-
tween the trees s and s′ on the tree space.

To obtain the species tree (τ ◦, q◦), we concatenate all genes in the data set and
infer the species tree by maximum likelihood using package phangorn [Schliep
(2011)]. As explained in Rokas et al. (2003), this tree receives strong and stable
support from many standard reconstruction methods. We will use the sequence
data for the YKL120W gene as an example, noting that the reconstructed maxi-
mum likelihood tree is different from the species tree for that gene. We note that
analyses of other genes in the data set can also be obtained in a similar manner,
but the incongruence between the ML tree and the species tree is of greater inter-
est. We compute the BHV distance using the R function dist.multiPhylo in
the distory package [Chakerian and Holmes (2013)] and modify the likelihood
computation subroutine of the phangorn package to incorporate the penalty term
into the optimization procedure.

While our theoretical results help provide insights about the convergence and
asymptotic properties of the regularized estimator, they offer little about how the
estimator performs when the tuning parameter is chosen in a data-dependent and
stochastic way, or what is a proper procedure to tune such parameter. There are
several possible techniques for choosing the penalty parameter; however, the rec-
ommended (and default) technique for selecting C in regularization problems is
to choose C such that the estimator minimizes the cross-validation estimate of the
risk [Homrighausen and McDonald (2013), Zhang (1993)]. In our example, we
will follow this standard procedure to select the constant C for the penalty.

The procedure for choosing C can be summarized as follows. We first randomly
divide the sequence data into three parts, consider each part as validation data once
and use the remaining two parts to reconstruct the tree with various values of C =
0,0.25,0.5,0.75,1,1.25,1.5. Here, C = 0 corresponds to maximum likelihood
estimator. This process is repeated 1000 times and the average log-likelihood per
site for each tree on the validation data is used to choose the constant C. The result
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FIG. 4. Average log likelihood from 3-fold cross validation.

is summarized in Figure 4. We observe that large values of C (e.g., 1,1.25,1.5)
are preferred over small values (0,0.25,0.5), which indicates that the regularized
method has better performance compared to the standard ML approach. However,
over-penalizing the distance to the species tree does not lead to better estimates.

Using the value of C = 0.75 that maximizes the average log-likelihood, we
reconstruct the regularized maximum likelihood tree, which is visualized in Fig-
ure 5(a). This gene tree has the same topology as the species tree, while the gene
tree reconstructed by maximum likelihood method has a different topology [Fig-
ure 5(b)]. This result illustrates that while there might not be enough informa-
tion from the (short) sequence data to reliably estimate the correct tree, additional
knowledge from the species tree may help produce a better estimate (in terms of
likelihood value on the validation data). We note that this is consistent with the
findings in Rokas et al. (2003), whereas adding more data from a different source
improves the estimator. In our case, the additional information from other genes is
compressed in the guiding species tree and has the same effect.

8. Discussion. In this paper, we propose a tree reconstruction method via reg-
ularization using the BHV geodesic distance and analyze its asymptotic properties.
We prove that the regularized maximum likelihood estimator is consistent and de-
rive global error estimates of the estimator in various settings. Using these esti-
mates, we are able to provide an upper bound on the sample complexity of the
estimator to recover the true topology.

Steel and Székely (2002, 2009) provide a bound on the sample complexity of
the maximum likelihood estimator, which requires that sequence length k increase
exponentially in the number of species n in order to reconstruct the true topol-
ogy. With the same requirement, Atteson (1997) proves that the neighbor-joining
method can recover the true topology for the Neyman 2-state model on a binary
trees for which the transition probability on all edges is bounded from below and
above. With the same assumptions in Atteson (1997), Erdős et al. (1999) prove
that the dyadic closure method only needs k to grow polynomially with respect
to the number of species n in order to reconstruct the true topology. The work
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FIG. 5. Reconstructed gene tree for the YKL120W gene.

of Daskalakis, Mossel and Roch (2011), Gronau, Moran and Snir (2012), Huson,
Nettles and Warnow (1999), Mossel (2007) extend the result in Erdős et al. (1999)
to construct various fast converging algorithms for tree reconstruction. Recently,
Roch and Sly (2017) prove that for r-state symmetric models, the sample complex-
ity for MLE is O(logn) if all the branch lengths are less than log

√
2. Otherwise,

the sample complexity is poly(n). Mossel (2003) gives a lower bound of order
O(nμg/ log 2−1−o(1)) for the sample complexity of any tree reconstruction method
on binary trees when g > log

√
2.

Theorem 6.2 proves that the regularized maximum likelihood estimator recovers
the true topology if k = poly(n), which is the best possible sample complexity
of other methods. However, unlike most of the previous algorithms that perform
poorly on trees with indistinguishable/very short edges, the regularized estimator
can reconstruct all edges of length greater than any given threshold from sequences
of polynomial length. Moreover, when information about the model configuration
is available, we can derive a conservative confidence region for the estimator and
use that to assess the support of tree splits from data. We also do not assume a
lower bound for internal edges as previous work has done.

The uniform bounds on the convergence of the empirical likelihood, provided
by Lemma 4.2 and Lemma 4.3, are of independent interest. These results allow us
to consider the space of phylogenies as a continuous object instead of discretizing
the branch lengths as has been done in previous analyses of sample complexity for
tree reconstruction [e.g., Roch and Sly (2017)]. In a similar manner, we only as-
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sume that the lower bound for pendant edges is known and do not impose this con-
dition on the inner edges. This minor relaxation allows smooth transition between
tree topologies and enables the uses of analytical methods to analyze phylogenetic
algorithms.

There are several venues for improvement. First, in our current setting, we still
assume that the upper bound on the branch lengths are known a priori. This condi-
tion can be relaxed by extending Lemma 4.3 to the case of unbounded edges and
by highlighting the fact that the regularization term already imposes some implicit
constraints on the branch lengths. Second, we currently use the BHV geodesic
distance as the penalty for regularization. While the geodesic distance is the most
natural distance on the BHV space and is strongly convex, this distance cannot be
computed in linear time. We would like to extend the result to other (computa-
tionally cheaper) distances on tree space such as those proposed in Amenta et al.
(2007), or to other nonstrongly convex penalties. Relating to the species tree/gene
tree problem, it is also worthwhile to consider penalty metrics based on explicit
models of discordance-generating events, such as the duplication-loss cost inves-
tigated in Wu et al. (2013).
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SCORNAVACCA, C., JACOX, E. and SZÖLLŐSI, G. J. (2015). Joint amalgamation of most parsimo-

nious reconciled gene trees. Bioinformatics 31 841–848.
SEMPLE, C. and STEEL, M. (2003). Phylogenetics. Oxford Lecture Series in Mathematics and Its

Applications 24. Oxford Univ. Press, Oxford. MR2060009
STEEL, M., HENDY, M. D. and PENNY, D. (1998). Reconstructing phylogenies from nucleotide pat-

tern probabilities: A survey and some new results. Discrete Appl. Math. 88 367–396. MR1658533
STEEL, M. A. and SZÉKELY, L. A. (2002). Inverting random functions. II. Explicit bounds for

discrete maximum likelihood estimation, with applications. SIAM J. Discrete Math. 15 562–575.
MR1935839

STEEL, M. A. and SZÉKELY, L. A. (2009). Inverting random functions. III. Discrete MLE revisited.
Ann. Comb. 13 365–382. MR2557045
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