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Abstract

VDJ rearrangement and somatic hypermutation work together to produce antibody-coding
B cell receptor (BCR) sequences for a remarkable diversity of antigens. It is now possible to
sequence these BCRs in high throughput; analysis of these sequences is bringing new
insight into how antibodies develop, in particular for broadly-neutralizing antibodies against
HIV and influenza. A fundamental step in such sequence analysis is to annotate each base
as coming from a specific one of the V, D, or J genes, or from an N-addition (a.k.a. non-tem-
plated insertion). Previous work has used simple parametric distributions to model transi-
tions from state to state in a hidden Markov model (HMM) of VDJ recombination, and
assumed that mutations occur via the same process across sites. However, codon frame
and other effects have been observed to violate these parametric assumptions for such
coding sequences, suggesting that a non-parametric approach to modeling the recombina-
tion process could be useful. In our paper, we find that indeed large modern data sets sug-
gest a model using parameter-rich per-allele categorical distributions for HMM transition
probabilities and per-allele-per-position mutation probabilities, and that using such a model
for inference leads to significantly improved results. We present an accurate and efficient
BCR sequence annotation software package using a novel HMM “factorization” strategy.
This package, called partis (https:/github.com/psathyrella/partis/), is built on a new gen-
eral-purpose HMM compiler that can perform efficient inference given a simple text descrip-
tion of an HMM.

Author Summary

The binding properties of antibodies are determined by the sequences of their correspond-
ing B cell receptors (BCRs). These BCR sequences are created in “draft” form by VD]
recombination, which randomly selects and deletes from the ends of V, D, and ] genes,
then joins them together with additional random nucleotides. If they pass initial screening
and bind an antigen, these sequences then undergo an evolutionary process of mutation
and selection, “revising” the BCR to improve binding to its cognate antigen. It has recently
become possible to determine the BCR sequences resulting from this process in high
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throughput. Although these sequences implicitly contain a wealth of information about
both antigen exposure and the process by which humans learn to resist pathogens, this
information can only be extracted using computer algorithms. In this paper, we employ a
computational and statistical approach to learn about the VD] recombination process.
Using a large data set, we find consistent and detailed patterns in the parameters, such as
amount of V gene exonuclease removal, for this process. We can then use this parameter-
rich model to perform more accurate per-sequence attribution of each nucleotide to either
a 'V, D, or ] gene, or an N-addition (a.k.a. non-templated insertion).

This is a PLOS Computational Biology Methods paper.

Introduction

The molecular sequences of B and T cell receptors (BCRs and TCRs) determine what antigens
will be recognized by these lymphocytes, with B cells recognizing antigens via immunoglobu-
lins [1] and T cells recognizing antigenic peptides presented by the major histocompatibility
complex [2]. Together, BCRs and TCRs are able to bind to a great diversity of antigens due to
their sequence-level diversity. Diversity in the receptor loci is generated first by the process of
VDJ recombination, in which germline-encoded V, D, and J genes are randomly selected, the
gene ends are trimmed some random amount, and then joined together with random non-tem-
plated insertions forming the N-region (Fig 1) [3, 4]. BCR sequences diversify further through
the Darwinian process of somatic hypermutation and antigen selection [5, 6].

In the 30-odd years since the discovery of VD] recombination by Susumu Tonegawa [3],
molecular sequencing has been widely applied to BCRs and TCRs to further our understanding
of this process. Recently, high throughput sequencing has given a remarkable perspective on
the forces determining the immunoglobulin repertoire [7-12]. In addition to advancing basic
science understanding, such sequencing is being applied to learn how antibodies develop
against antigens of medical interest, such as through influenza vaccination [13]. There have
also been spectacular advances using this technology to understand the ontogeny of HIV
broadly neutralizing antibodies, with the still-elusive goal of eliciting them with an HIV vaccine
[14-17].

A fundamental step in the analysis of such a sequencing data set is to reconstruct the origin
of each nucleotide in each sequence: whether it came from an N-addition or from a germline
V, D, or ] gene, and if so, which one and where. Even if a complete collection of alleles (gene
variants between individuals) for the germline V, D, and ] genes were available, this problem
would be challenging because exonuclease deletion obscures the boundaries between N-regions
and germline V, D, and J gene sequences. The BCR case is made more difficult by the processes
of somatic hypermutation and clonal selection: if a BCR sequence does not match a germline
gene in an area adjoining exonuclease removal, it may have come from a mutated germline
position or an N-addition (non-templated insertion). We will call this general problem of
describing the source of each nucleotide in a BCR (or TCR) sequence the BCR (or TCR) “anno-
tation problem”. Here we will focus on the more challenging BCR variant of the problem.

One approach is to leverage general-purpose tools for doing pairwise sequence search such
as BLAST [18] and Smith-Waterman local alignment [19] for the annotation problem. Adding
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Fig 1. The VDJ recombination process, in which individual V, D, and J genes are first randomly
selected from a number of copies of each. These genes are then joined together via a process that deletes
some randomly distributed number of nucleotides on their boundaries then joins them together with random
“non-templated” nucleotides in the N-region (blue). The specificity of an antibody is to a large extent
determined by the region defined by the heavy chain recombination site, referred to as the third
complementarity determining region (CDR3).

doi:10.1371/journal.pcbi.1004409.9001

BCR-specific aspects to these basic algorithms has resulted in a collection of useful tools such
as TgBLAST [20] and the online annotation tool on the IMGT [21] website. Another approach
has been to search sequences for motifs characteristic of various parts of the locus and search
databases for the resulting segments [22].

However, BCR sequence formation is quite complex (reviewed in [11]) and this complexity
invites a modeling-based approach, specifically in the framework of hidden Markov models
(HMMs). HMM s for sequence analysis consist of a directed graph on “hidden state” nodes
with defined start and end states, with each node potentially “emitting” a nucleotide base or
amino acid residue [23, 24]. In the BCR case, the hidden states represent either (gene, nucleo-
tide position) pairs or N-region nucleotides, and the emission probabilities incorporate the
probability of somatic hypermutation at that base. The HMM approach to BCR annotation has
been elegantly implemented first in SODA [25], then 1HMMunealign [26], and then SODA2
[27]. The transition probabilities for these previous HMM methods were modeled parametri-
cally: specifically, they used the negative binomial distribution as first used in [28], and the
emission probabilities come from the same mutation process across positions (even if the pro-
cess is context-dependent) [26].

High throughput sequencing has become commonplace in the time since these HMMs were
designed; this provides both a challenge and an opportunity for such model-based approaches.
It is a challenge because millions of distinct sequences are now available from a single sample
of B cells, so methods must be efficient. On the other hand, it is an opportunity because such
large data sets offer the opportunity to develop and fit models with much more detail.

We hypothesized that large data sets would reveal reproducible fine-scale details in the
probabilistic rearrangement process that could be used for improved inference. The reproduc-
ibility of such details on a per-gene level is suggested by two papers from the same group: first,
analogous results in T cells [29], and, more recently, similar results for B cells (independent to
that presented here) [30]. For annotation via HMMs, researchers have previously used proba-
bility distributions such as the negative binomial [28] to model exonuclease deletion lengths,
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and modeled the propensity for somatic hypermutation based on sequence context [26]. How-
ever, BCR sequences are protein-coding, and thus there are constraints on N-region and exo-
nuclease deletion lengths that come from sequence frame; these types of constraints cannot be
expressed by unimodal probability distributions with few parameters. For example, the post-
selection D gene is preferentially (though not exclusively) used in a specific frame [9, 31],
which in some cases is simply due to a stop codon being present in the alternate frames [11].
This suggests that a parameter-rich approach could be useful: instead of parametric distribu-
tions with a few parameters, using a large data set we could fit a per-allele categorical distribu-
tion for N-region and exonuclease deletion lengths, in which every outcome has its own
probability. Rather than modeling the process of somatic hypermutation with germline nucleo-
tide context, we could simply infer the per-position per-allele mutation frequency and use this
as the mutation probability.

In order to meet the challenge and opportunity of large-scale data, we have built partis:a
fast, flexible, and open source HMM framework to analyze BCR sequences. We started by writ-
ing an efficient new HMM compiler, called ham, which enables inference on an arbitrary
HMM specified via a simple text file rather than having to write special-purpose computer
code. We then developed an HMM “factorization” strategy, which along with extensive caching
and optimizations in the overall model topology, results in an order of magnitude faster execu-
tion than previous HMM implementations for BCR/TCR sequences. This work, along with
parallelization, means that data sets of tens of millions of unique sequences [32, 33], the largest
available today, are comfortably within the capabilities of partis running on standard
research hardware.

We find that HMM inference using this approach to fitting HMM parameter distributions
for heavy chain BCRs outperforms previous approaches for the annotation problem [25-27].
The parameters for the non-parametric transition and emission probabilities are fit “on the fly”
for each individual data set, using a tiered aggregation strategy to scale the level of model detail
to the amount of data. The accuracy of partis is further increased by using multiple
sequences from the same rearrangement event (which differ due to somatic hypermutation)
using pair-HMMs and their generalization to more than two emission sequences, which we
will call “multi-HMMs”. We also leverage the full power of HMM:s by not only calculating the
best (known as Viterbi) annotations of a sequence according to that HMM, but also computing
forward probabilities for single and multi-HMMs. These forward probabilities allow one to
integrate out uncertainty in quantities that are not of interest, retaining more accurate esti-
mates (with uncertainty) of those parameters that are of interest. The partis software imple-
mentation has been engineered to be extensible and maintainable: it is open source and
includes continuous integration and reproducible validation using the Docker software con-
tainer system [34].

Results

Empirical distributions of VDJ recombination process parameters
deviate reproducibly from simple distributions

We find that the probability distributions of rearrangement parameters for heavy chain BCR
sequences deviate reproducibly from any commonly used distribution. For example, our
inferred exonuclease deletion length distributions take on a variety of shapes (Fig 2), which
vary from gene to gene, and allele to allele, but appear consistent across humans (see also S2
Fig). Mutation rates vary by an order of magnitude from position to position, creating a pattern
which is unique to each allele but similar across humans for that allele (Fig 3 and S3 Fig). The
overall level of mutation, however, varies between humans in our data sets (as noted previously
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Fig 2. Observed exonuclease deletion length frequencies for two V, four D, and two J alleles on the
three humans (A, B, and C) in the Adaptive data set. These alleles were chosen to be representative of the
various shapes taken by the empirical distributions. In the complete set of plots (which are publicly available
as described in the text), per-allele distributions are frequently multi-modal and appear similar between
humans.

doi:10.1371/journal.pcbi.1004409.g002

[35]). N-region lengths, on the other hand, vary much less across alleles, and are typically
unimodal (Fig 4 and S3 Fig). The full collection of plots is available on Dryad at http://dx.doi.
org/10.5061/dryad.149m8. In these plots the error bars are constructed using a bootstrapping
procedure: we divide unique sequences in the data into ten subsets and plot the uncertainty as
the standard deviation over these subsets (see Methods).

By considering all of the parameter estimates together, we find that estimates are consistent
between sequence subsets. Indeed, we partitioned the set of unique sequences into 10 disjoint
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Fig 3. Mutation frequency versus position. Typical observed mutation frequencies for two V, two D, and
two J alleles on the three humans (A, B, and C) in the Adaptive data set. The x axis is the zero-indexed
position along the IMGT germline allele. Mutation frequencies are seen to be highly position-dependent.
While the structure of these mutation distributions appears similar between humans, the overall level of
mutation varies. The first base of the conserved cysteine and tryptophan codons (i.e. the CDR3 boundaries)
are indicated with black vertical dashed lines. In the complete set of plots (which are publicly available as
described in the text), mutation frequencies are highly variable across sites with a pattern that is similar
between humans.

doi:10.1371/journal.pcbi.1004409.9g003

sets and estimated HMM parameters (transition and emission probabilities) independently for
each subset to learn to what extent those parameters are dependent on details of the data set
rather than underlying processes. By plotting histograms of the means and variances for all of
the HMM parameters, we find that the between-subset variance is consistently much smaller
than the mean (Fig 5 and S4 Fig). That these parameter estimates are consistent between dis-
joint subsets of a collection of unique sequences, and to a lesser extent consistent between
humans, indicates that they reflect biology rather than noise. Although the suggestion of con-
sistency between humans is interesting, our strategy of per-sample parameter fitting does not
require any such assumption, and so we refrain from formalizing this suggestion of between-
human consistency into a statistical statement.

ham

We implemented a new HMM compiler, called ham, because none of the existing compilers
were suitable for our needs (see Methods for more details). This program is able to perform
classical, pair, and multi-HMM inference on any HMM within computational constraints
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@' PLOS | soMpuTaTioNAL
NZJ : BIOLOGY VDJ Annotation via Consistency of Rearrangement and Substitution

IGHD7-27*01 -- VD N length IGHD1-7*01 -- VD N length
>; i 1 T T B >} T T 1
5] o 1 5]
: 03k —o— A _ : —o— A
st -8 1 2 [ °
S b " 1 Zoaof) e C -
& 1 &7}
0.2\ - LI\
[ \\L ] 005 ]
01 B, - L 1
’ :\\ ] _ \ ]
I ‘;‘K h . ,
L Nl:' E r >‘\.‘T:\‘r\.\/:\ 1
ool 1 e = = PN 0.00 L 1 1 1 =
70 5 10 15 2 ) 5 10 15 20
bases bases
IGHJ4*02 -- DJ N length IGHJ1*01 -- DJ N length
>} LT 1 T T >} _I T T 1
§ [ ©A % :* TA
= N B 5 f ~ B 1
g 02 4 e e - g 03 0 e
E T 1 & [ ]
: E‘L\ ] wf ]
0.1 e - [ ]
I \ ] oaf &, ]
L 1‘\‘ . 4 E 7\:\'\‘ ]
L = 4 I S T
0.0 1 1 ‘”‘"‘”f*'—*x-—; 0.0 L1 1 ‘y\l&"-t = 2]
70 5 10 15 20 70 5 10 15 20
bases bases

Fig 4. N-region lengths. Typical observed N-region lengths at the VD and DJ boundaries for two D and two J
alleles. In the complete set of plots (which are publicly available as described in the text), distributions have a
similar shape and the per-allele plots appear similar between humans.

doi:10.1371/journal.pcbi.1004409.9g004
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Fig 5. Mean and variance of inferred parameters. The across-subset mean and variance of inferred
parameter values for each human in the Adaptive data set across 10 disjoint subsets of the data.

doi:10.1371/journal.pcbi.1004409.g005

given a text-file description of its topology. This text file description is in YAML format (http://
yaml.org/), which is easy to write both by hand and with existing libraries for all popular pro-
gramming languages.

Although our initial motivations lay more in usability than optimization, ham’s general pur-
pose C++ code is slightly faster and uses somewhat less memory than code generated by the
well-known HMMoC [36], even ignoring the extra time for code generation and compilation in
the latter (Table 1). The ham C++ code is open source (GPL v3 license), and is available at
https://github.com/psathyrella/ham/.
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Table 1. HMM compiler performance comparison.

method seq length (x10°) user time (sec) max memory (MB)
HMMoC 1 0.57 £ 0.01 18.01 £ 0.01
ham 1 0.54 + 0.01 12.65 0.0
HMMoC 10 5.05+0.07 168.7 £ 0.1
ham 10 4.77 £ 0.05 110.6 £ 0.1

Efficiency of ham compared to code generated by HMMoC for the “occasionally dishonest casino” from [23]. Elapsed CPU time and memory usage (user
time and maximum resident set size from the Unix time command) for the Forward probability calculation are shown for sequences of length 1 million
(mean of 300 runs) and 10 million (mean of 30 runs). These estimates do not include the extra time for code generation and compilation which is
necessary in HMMoC. Uncertainties are the standard error on the mean.

doi:10.1371/journal.pcbi.1004409.t001

partis

We then used ham to build a platform called partis to perform annotation of B cell receptor
sequences (BCRs) using HMMs. This platform is especially effective for modern large sequenc-
ing data sets because it can infer detailed parameters concerning the rearrangement process,
and then perform annotation inference on each sequence in the set. It is written in Python, is
open source (GPL v3 license), and is available at https://github.com/psathyrella/partis/. A
Docker image with partis installed is available at https://registry.hub.docker.com/u/
psathyrella/partis/.

In order to find a maximum-likelihood annotation, partis calculates the Viterbi path
through the HMM, giving an annotation consisting of the germline genes used to make the
BCR, the amount of junctional exonuclease deletion for each gene, and the size of junctional
insertions (N-regions) between the trimmed germline genes. It can also compute forward prob-
abilities, which give the joint probability of sequence and annotation. All of this information is
output as text files in comma-separated format.

Benchmarking on simulated data

We developed a simulation engine for B cell receptor sequences implemented in non-HMM-
based code separate from that used for inference (see Methods). This engine implicitly takes
into account detailed dependencies between variables beyond what is possible in our inferential
framework. To create a “true naive” (i.e. unmutated ancestor) sequence it begins by sampling a
single point from the joint empirical distribution over all rearrangement parameters observed
in a data set: such a draw specifies which V, D, and J genes led to the BCR, the amount by
which they are trimmed, and the length of the N-regions. Because the draw is from the joint
empirical distribution, it reflects our best understanding of a “true” rearrangement event from
the data set. The simulator then generates a random sequence with corresponding rearrange-
ment parameters (e.g. N-region length between V and J), and then simulates somatic hypermu-
tation out to each leaf of a given tree using per-position mutation rates. The test sample for
which we show performance comparisons (Table 2 and Figs 6, 7 and 8) may be found in the
partis GitHub repository at http://git.io/vn9gt. This sample was generated with parameters
from human A in the Adaptive data set, except that the mean mutation frequency was doubled
in order to provide a more challenging inference test (the original mutation frequencies for the
three humans can be found in S6 Fig).

We find that our strategy using flexible categorical distributions (i.e. general discrete distri-
butions) outperforms previous BCR annotation packages on this simulated data. Indeed,
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Table 2. Correct gene calls for all public BCR annotation methods.

method V correct D correct J correct
partis (k=5) 0.9968 +.0006 0.828 +.004 0.9983 +.0005
partis (k=1) 0.9955 +.0008 0.753 +£.005 0.9766 +.0017
ighutil 0.9938 +.0009 0.714 £.005 0.961 +£.002
iHMMunealign 0.938 +.003 0.530 +.006 0.799 +.005
IgBLAST 0.986 +.001 0.521 +.006 0.872 +.004
IMGT 0.988 +.001 0.574 +.006 0.935 +.003

failed

0 +.00003
0 £.00003
0 £.00003
0.18 +.004
0.10 +.003
0.06 +.003

Fraction of genes correctly inferred up to allele, i.e. the number of sequences for which the specified method called the correct gene (regardless of allele)
divided by the total number of sequences, for all publicly-available BCR annotation methods on a simulated sample of 30,000 sequences. For those
methods which fail for some input sequences (usually due to poor D matches), we specify the fraction of sequences for which such failures occurred.

partis is shown both for single sequences (k = 1), and for a multi-HMM (k = 5), which performs simultaneous inference on five clonally related
sequences. Values are shown * the half-width of the binomial proportion 95% confidence intervals using Jeffreys prior.

doi:10.1371/journal.pcbi.1004409.t002
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Fig 6. Correct gene calls versus sequence mutation frequency, i.e. the number of sequences for
which the specified method called the correct gene (regardless of allele) divided by the total number
of sequences, versus sequence mutation frequency, for publicly-available BCR annotation methods

on a simulated sample of 30,000 sequences. partis is shown both for single sequences (k = 1), and for a
multi-HMM (k = 5), which performs simultaneous inference on five clonally related sequences.
doi:10.1371/journal.pcbi.1004409.9006
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Fig 7. Hamming distance between inferred and true naive sequences, for all available BCR annotation
methods on a simulated sample of 30,000 sequences. partis is shown both for single sequences
(k=1), and for a multi-HMM (k = 5), which performs simultaneous inference on five clonally related
sequences.

doi:10.1371/journal.pcbi.1004409.9007

partis has higher accuracy than other methods in terms of the simple fraction of genes that

are correctly inferred (Table 2), a metric used in previous studies [27, 37]. We note that this
higher accuracy is true across a variety of mutation frequencies (Fig 6). While intuitive, how-
ever, the fraction of correct genes ignores the difference between slightly incorrect and very
incorrect inferences in terms of underlying sequence (see Methods for details).

A more detailed comparison via the Hamming distance between inferred and true naive
sequences also shows that partis outperforms previous HMM-based implementations (Fig
7). Neither SODA [25] nor SODA2 [27] were available from the web or directly from the author
for comparison. The ighutil program [35, 38] is a straightforward application of Smith-
Waterman alignment [19] to the annotation problem.

partis also gave the most accurate parameter inferences (the narrowest distributions

around the correct value in Fig 8) for N-region lengths, exonuclease deletion lengths, and
mutation frequencies.

Additionally, we find that using multiple sequences from a single rearrangement event (dif-
fering only in somatic hypermutation) leads to more accurate inference than using one

sequence at a time. ham’s ability to simultaneously emit an arbitrary number of symbols allows
us to take advantage of this in a way that previous implementations could not, providing an
additional boost in accuracy. This annotation with multi-HMM:s is shown in the preceding Fig-

ures as “partis (k=5) because, as an example, we do inference on five sequences known to
form a clonal family.

Although the benefits of our more-detailed model decrease with decreasing sample size, we

find that our “tiered aggregation” strategy (see Methods) performs well with smaller numbers
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Fig 8. True versus inferred parameters for all methods. The difference between inferred and true values

for exonuclease deletion lengths, N-region lengths, and mutation frequency for all available BCR annotation

methods on a simulated sample of 30,000 sequences; more tightly peaked around zero is better. partis is

shown both for single sequences (k = 1) and for a multi-HMM (k = 5), which performs simultaneous inference
on five clonally related sequences.

doi:10.1371/journal.pcbi.1004409.9g008

of sequences (Fig 9). Indeed, performance does not begin to degrade appreciably until sample
size drops to around a hundred sequences.

We also find that partis is computationally efficient, making it suitable for inference on
large data sets. For efficiency tests, we used samples of one and ten thousand simulated
sequences. The Smith-Waterman methods in 1ghutil require about 0.03 seconds per
sequence. The HMM-based inference, alone, of partis takes about 0.04 seconds per
sequence; however partis performs a preliminary Smith-Waterman step (see Methods), and
typically also writes the HMM input files from the Smith-Waterman and initial HMM steps. In
total, then, partis takes between 0.1 and 0.2 seconds per sequence, depending on sample
size. The other available HMM-based method, i HMMunealign, takes about 5 seconds per
sequence on both data sets. We suspect that this gain in speed is from the HMM factorization
scheme described in the Methods. As a practical example, a sample with 100,000 sequences
takes partis about 20 minutes to annotate using ten processes on our code-development
server (which has a hyperthreaded 8-core 2.9 GHz Xenon processor). As a typical example on
a research compute cluster, one might run one million sequences with 100 processes divided
across some number of machines, which would also take about 20 minutes (job dispatch via
slurmis easily done via a partis command line flag). For centers without computing
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Fig 9. Performance versus sample size. partis performance as measured by Hamming distance
between inferred and true naive sequences when given 50 to 10,000 total sequences. When fewer
sequences than a threshold are provided for a gene, partis uses a tiered aggregation strategy (see
Methods) to obtain enough sequences on which to do parameter estimation, which partly recovers
performance as shown here.

doi:10.1371/journal.pcbi.1004409.9009

clusters, we estimate that analyzing a million unique sequences would cost $5.25 using on-
demand compute through Amazon Web Services. We did not attempt speed comparison with
web-based BCR analysis tools, although we note that as a group they cannot be scaled to the
size of the task, and are subject to periods of high load and downtimes.

Shorter sequences, which do not include the entire V and/or ] segments, are perfectly appro-
priate input for partis. The method currently requires only that there is at least one base
from the V, D, and J, although of course longer sequences will lead to more accurate results.

Discussion

We find substantial complexity in the details of the heavy chain BCR rearrangement process;
these details are consistent between data subsets and appear consistent between humans. This
observation agrees with the corresponding observation for T cells [29], with work showing
codon effects on D segment frame usage [9, 31], and more recent work on B cells [30]. This
complexity suggests the use of parameter-rich categorical distributions for transition and emis-
sion probabilities in a hidden Markov model (HMM) for BCR annotation. Indeed, we find that
incorporating the peculiarities and richness of modern data sets enables more accurate annota-
tion of BCR sequences. By letting the data inform parameters such as per-position mutation
frequencies, we side-step the need to perform sophisticated modeling of processes such as con-
text-sensitive hypermutation. The multi-HMM framework enables simultaneous annotation of
a number of sequences in a clonal family, which results in increased accuracy because the
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effects of various mutations can be averaged out in a principled way. The four insert states in
our HMM topology also allow inference of unmutated ancestral sequences in N-regions.

We have extended the ideas of previous authors using HMMs for BCR sequence annotation
[25-27] and previous work on HMM compilers [36, 37] to build partis, a system to anno-
tate BCR sequences. We find that this system substantially outperforms previous methods
when given simulated data. We have not yet tested it against two very fast new methods [39,
40] that were released after the initial submission of this paper; such sequence-identity based
methods may be preferable to model-based partis for applications in which speed is critical.
The partis package and its dependencies are open source, and validation can be run using a
supplied Docker image.

When partis is presented with a data set for the first time, it infers around one to ten
thousand parameters for that data set; with this in mind, we would like to be very clear con-
cerning the potential for over-fitting. For any given application of partis, these parameter
estimates are intermediate steps for which we are not making a claim of generality, and are
instead specific to that data set. This situation is analogous to fitting the rate parameters of a
mutation rate matrix when performing a maximum likelihood phylogenetic analysis. In con-
trast, previous methods used a collection of sequences as a training set for parameter inference
and applied HMMs with those general-purpose parameters to other sequences. Thus it makes
perfect sense that previous authors [27] test on simulated sequences made with a different set
of parameters than the ones used for training. However, because partis fits parameters on
the fly for each data set, it never makes out-of-sample predictions and thus does not “train” in
this sense. This is not to say that the approach would not benefit from some form of across-
sample estimation of parameters. If, for example, the sample taken is small and does not appro-
priately represent the true parameter distribution, then one would obtain too high of confi-
dence in bad inferences from these incorrect parameter estimates. Such situations could benefit
from regularization via empirical Bayes, using such overall parameter estimates as across-
human priors [41]. Such an approach will become increasingly viable as we become more
familiar with the population-level distributions of the relevant parameters.

We have also presented a robust validation framework for partis. For effective validation
we need a set of sequences which is both representative of the data on which we will apply the
method, and for which we know the true rearrangement history. Unfortunately real data,
which is the most readily-available source of sequences which satisfy the first criterion, does
not exist which also satisfies the second. In [26], for instance, validation was performed on two
data sets which were each known to consist of a single clone with unknown true annotation,
and the authors used the fraction of sequences annotated to have the same germline alleles as a
proxy for accuracy. This approach cannot test whether the methods are inferring the correct
allele, and more significantly, it tests on only two points in the entire, many-dimensional rear-
rangement space. In other words, validation was performed on a sample of two rearrange-
ments, and gives no information as to how each method might perform on every other possible
combination of germline allele choices and exonuclease deletion boundaries.

We thus chose to use simulation, for which by construction one knows the correct answer,
but which also requires proof that it accurately represents data (see Methods for details). Our
simulations cover a broad range of parameter space, and use parameter distributions inferred
from data sets. However, they do not explicitly model sequencing error, as the landscape of
sequencing techniques is rapidly evolving, including techniques such as replicate immunose-
quencing [33, 42] and barcoding [13, 43]. For the same reason, we have not attempted to add
platform-specific emission probabilities to the HMM, and thus users employing partis for
the annotation of sequence data from a platform with a specific bias should be careful that this
bias does not creep into the annotations.
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The results presented here have all used the IMGT set of germline sequences. We acknowl-
edge the substantial discussion concerning this set’s accuracy [44, 45], but IMGT is still by far
the most popular resource for germline information and tools. We have thus designed par-
tis soitcan switch to any other germline database using a simple command line flag, for
instance as new information becomes available [45, 46].

We emphasize that the improved accuracy obtained using the multi-HMM framework in
simulation assumed that we knew the collection of sequences form a clonal family. On real
data, of course, we do not know which sequences derive from the same rearrangement event,
and in fact this is a challenging problem. Our next step will be to use the HMM framework pre-
sented here to cluster sequences together by rearrangement event.

While we and others have found HMMs to be useful for the BCR annotation problem, they
do have certain limitations. The Markov assumption (that the current state is ignorant of all
states except for the previous one) makes it difficult to propagate information across the
HMM. For example, levels of mutation are correlated between different segments of the BCR
[35]; thus upon traversing the V segment of a query sequence we have information concerning
the overall mutation rate in the rest of the sequence. The Markov chain’s conditional indepen-
dence, however, makes it impossible to propagate this information to the D and J segments in a
strict HMM framework. Additionally, HMMs cannot account for palindromic N-additions
[47], complex strand interaction events [48, 49], or the appearance of tandem D segments [9].
Conditional Random Fields (reviewed in [50]) could provide a way around some of these limi-
tations; linear-chain conditional random fields enjoy many of the attractive computational
properties of HMMs while allowing for more complex dependencies. As a final note, the HMM
does not at this time model insertion/deletion mutations within gene segments [51]. We
instead look for such events during the preliminary Smith-Waterman alignment step, and if
one is found the user may run the HMM both with and without the insertion/deletion in ques-
tion. Such events, though rare in the Adaptive data set [35], could in principle be incorporated
into an HMM with additional transitions between the states representing insertions and dele-
tions within the HMM, although significant innovation would be needed in order to keep
annotation inference tractable.

Methods
Data sets used

As our primary data set, we used the Illumina-sequenced heavy chain BCR sequence data gen-
erated from a single time point sample from each of three humans, as recently described in
[33]. This data set is distinguished by its size (30 million total unique sequences, split between
three humans and naive versus memory compartments) and the experimental design, which
used replicate wells to enable template count estimation and decrease error [42]. This data is
available at http://adaptivebiotech.com/link/mat2015; we will call it the “Adaptive” data set.

We also show results on the data from [13], which used Illumina paired-end sequencing of
heavy chain BCRs to investigate memory B cell recall after vaccination in 15 humans. This data
set used unique barcodes to decrease error, a technique which was validated using a reproduc-
ibility experiment. This data can be publicly accessed in GenBank (http://www.ncbi.nlm.nih.
gov/projects/gap/cgi-bin/study.cgi?study_id=phs000656.v1.p1); we will call this the “Vollmers”
data set.

ham
We considered writing specialized code to do HMM inference on B cell receptor sequences, as
has been done by previous authors [25-27]. However, for maximum flexibility and usability,
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Fig 10. A few states in the internal region of a B cell receptor sequence HMM. On the left is a state
representing a position in a gene with a germline G, which usually emits a G, but sometimes emits other
bases (i.e. mutates). If this state is near enough to the start or end of the gene, there will likely be transitions
from the initial state, or to the end state (upper arrows). On the other hand, if it is in the middle of a gene the
path is more likely to simply traverse the states in order (straight horizontal arrows).

doi:10.1371/journal.pcbi.1004409.g010

we were inspired by other work [36, 37] to build an HMM “compiler” that can do HMM infer-
ence given a description of the HMM in a format that is simpler to interpret and modify than
specialized inferential machinery. We were greatly inspired by the HMMoC [36] and
StochHMM [37] tools, but neither of them fully satisfied our needs. We found the XML input
format in HMMoC too complicated to script, and the paradigm of auto-generated C++ code to
be extremely difficult to test and debug. StochHMM, meanwhile, had a custom configuration
file format, lacked a pair-HMM implementation, and possessed an extraordinarily extensive
but not entirely functional feature set. However, StochHMM’s overall structure, and its basic
idea of reading the HMM specification from a text file rather than generating code, were simi-
lar to what we desired, so we used it as a starting point for a complete rewrite. (As an aside, we
note that the excellent HMMER tool [52] only implements profile HMMs, and thus is not
appropriate for our needs.)

We were thus led to build a new tool, which we call ham. ham uses the intuitive YAML text
format, which is easy to read and write by hand for simple cases, while being equally simple to
use for more complex models via existing programming libraries (such as for python and C+
+). This makes it trivial to test many different HMM topologies, since such modifications only
require editing a few lines in the text file.

In a simple comparison on the canonical “occasionally dishonest casino” example [23] we
find it slightly faster and more memory-efficient than HMMoC (Table 1). To generate these
results we ran the Viterbi algorithm using both programs on sequences of length one (resp.
ten) million, and averaged CPU time and memory use over 300 (resp. 30) runs. We note in
passing that HMMoC’s XML for this example consists of 5961 characters, while ham’s YAML
specifies the same information in only 440.

ham can simultaneously emit onto an arbitrary number (k) of outputs, such as for a pair-
HMM (k = 2). As previously described, this ability is useful for BCR ancestral inference.

We have also included an optimization we call “chunk-caching” which greatly speeds repeti-
tive dynamic programing (DP) table calculations. Any time the left-hand side of a sequence is
the same as that of another sequence, the corresponding left hand side of their DP tables will be
identical. We have thus included the ability to cache and recall previous DP tables in order to
avoid unnecessary recalculation in such cases.
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Fig 11. Overall topology of the HMMs in the V, D, and J segments. Inserts are shown as a single state for
clarity, but are replaced by four states in the actual HMM (Fig 12). Note that we include 5’V and 3' D
exonuclease deletions as a convenience (dashed lines) to account for varying read lengths.

doi:10.1371/journal.pcbi.1004409.g011

HMM architecture

We follow previous work [25-27] by representing each germline base in each V, D, and ] allele
as an HMM state (Fig 10). N-additions are represented as a separate class of states, and 5 (3)
exonuclease deletions as transitions to or from germline states which are not at the start (end)
of the gene. All of these states can be combined to create a single HMM for the entire VD] rear-
rangement process. While it can be useful to think of individually calculating the probability of
each such path, in practice one traverses the dynamic programming (DP) table using the recur-
sion relations found in [23].

Factorization
All inferential operations on the HMM described in the previous section can be made faster by
a process of “factorization”, which performs inference on a collection of smaller HMMs but
returns exactly the same results as a monolithic HMM. Each of these smaller HMMs has the
topology obtained by extracting it from the monolithic HMM, resulting in the topologies
shown in Fig 11. In order to motivate the procedure, we observe that 1) once a path hits a state
corresponding to a given allele, it cannot transition to any state corresponding to a different
allele for that segment (for example, a path in allele D; cannot transition to D,); and 2) the only
external information needed to calculate the DP table on a single allele’s HMM for a given
query sequence is where in the query sequence to start and where to end.

In order to describe the factorization process in more detail, we will use the notation of [23]
referring to a single HMM: e () represents the probability of emitting b in state s, and g,y is
the transition probability from state s to s’. We also use 7 for a path through the set of hidden
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states, and p;(x, 7) as an abbreviation for e, (x;)a,,_,: the contribution of position x to the for-
ward probability.

One can write the total probability of a sequence x under a given HMM, i.e. the forward
probability, as a sum over paths 7

P(x) = Y P(x,m). (1)

(For the Viterbi algorithm we would replace the summation with argmax.) As written, this cor-
responds to a single, monolithic HMM, and we are implicitly summing over all paths through
all alleles in the V, D, and J segments. In order to factorize this monolithic probability, we first
write the probability of each path in more detail as a product over each position 7 in the
sequence of length L:

P(x,m) := Heni(xi)an,-,,ni = Hpi(xa m).

Here 7, is the state at position i in path 7, and x; is the symbol at position i in the query
sequence. Thus e, (x;) is the probability of emitting x; from state 7;, and a,,_, is the transition
probability from the state at i — 1 to the state at 4.

We now subdivide this product for the path 7 into three factors for the V, D, and ] segments;
this divides the sequence correspondingly into three sections of length Iy, Ip, and L — I, — Ip.
We will use Pr(x, 7, Iy, Ip) to denote the forward probability of the path 7 through a single seg-
mentR € [V, D,]].

Iy+lp L

Iy
Pix,n) = [lotem [[otem [T pen)
i=1 j=ly+1 k=ly+ip+1

= Pv(xv T 1, lD)PD(x7 T, 1y, ZD)P](X7 m,ly, l[))

H Py(x,m, 1, 1p).

R=V.D,]

We then use this factorization to rearrange the order of operations in the sum over paths
Eq (1):

ZP(x,n) = Z H Po(x,m, 1, 15)

T n R=V.D]J
= E H E ng Pr(x,m, 1y, 1),
ly,lp R=V.D,J geR neg

where g, is the probability of choosing each allele g. Here we have isolated the computationally
expensive sum over all states ¥ <7, as far to the right as possible, so that we sum only over the
paths within each allele, and combine all alleles afterward. Factorization thus reduces a single
HMM with a state for each germline position in each of a few hundred alleles, to a number of
HMM:s, each with states only for a single allele. Since at each step in the forward (and Viterbi)
recursion relations we sum over all possible previous states for each current state, computing
time scales roughly as the square of the number of states in each HMM. By reducing the maxi-
mum number of states per HMM by several orders of magnitude, factorization thus substan-
tially decreases memory and computation time.

N-additions change this picture very little: we simply add them to the left side of each D and
] HMM (they could as easily go on the right side of V and D). The resulting HMM topologies
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Fig 12. HMM N-region topology. By using four states instead of one, this gives improved discrimination for
pairs or tuples of sequences because it does not ignore mutation information within N-regions. Self-
transitions for insert states ommitted for clarity.

doi:10.1371/journal.pcbi.1004409.9012

are shown in Fig 11. In this version, we show a single insert state, with emission probabilities
corresponding to the empirical N-region nucleotide distribution from data (compare Fig 12).

As described above, the HMM does not model insertion/deletion mutations within gene
segments at this time. Their inclusion would impose a significant computational burden: rather
than a linear number of transitions there would be a quadratic number, and adding deletion
self-transitions would require exploring the complete collection of potential deletions at every
site in order to get a valid forward probability. Noting that the Smith-Waterman step provides
only slightly less accurate annotation than the HMM, we instead provide the option of filtering
out potential insertion/deletion mutations during the initial Smith-Waterman step. This allows
the user to make a subjective decision, which we believe is appropriate in the face of the cur-
rently incomplete germline sequence databases, combined with many germline genes being
related to each other by insertion/deletion events. We thus we provide a command line param-
eter to adjust the Smith-Waterman gap-opening penalty to vary sensitivity to insertion/dele-
tion mutations. Any candidate insertion/deletion mutations are then flagged, after which the
HMM can be run with and without the insertion/deletion.

Multi-HMMs
As described above, ham is able to do inference under a model which simultaneously emits an
arbitrary number of symbols k. When k = 2 this is typically called a pair HMM [23], and we
call the generalized form a multi-HMM (k > 2). One can also think of this as doing inference
while constraining all of the sequences to come from the same path through the hidden states
of the HMM. In our setting, the k sequences resulting from such a multi-HMM model are the
various sequences deriving from a single rearrangement event (which differ only according to
point substitution from somatic hypermutation).

We can use this ability to perform improved inference on a collection of sequences deriving
from the same rearrangement event, allowing us to integrate out much of the uncertainty due
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to somatic hypermutation in each single sequence. In other words, not all mutations are shared
between clonally related sequences, and this provides valuable information that is only avail-
able if the HMM can emit several sequences simultaneously.

Although this approach allows us to share inferential power among various sequences
within the germline regions, with a standard VD] HMM topology (as in Fig 11) the N-region
does not contribute to the likelihood in a meaningful way. In order to allow likelihood contri-
butions from the N-region, we replace the single insert state with four states, corresponding to
naive-sequence N-addition of A, C, G, and T (Fig 12). The emissions of these four states are
then treated as for actual germline states (Fig 10): the A state, for example, has a large probabil-
ity of emitting an A, and a complementary probability (equal to the observed mutation proba-
bility) of emitting one of the other three bases. For example, if we pass in five sequences that
share identical N-regions except that one sequence has a single mutated base, the HMM uses
the information from the four non-mutated bases to conclude that the difference in the fifth
sequence is likely to be a mutation from the un-mutated ancestral sequence.

Parameter estimation

The parameters of our HMM consist of allele usage probabilities, transition probabilities, and
emission probabilities; as described above we estimate categorical distributions for each of
these. The inferred distributions of these parameters come from either a previous generation of
HMM estimates, or from Smith-Waterman (as described below).

In order to convert from substitution probability p to emission probabilities, we set the
probability of emission for each non-germline base to p/3, and correspondingly set the proba-
bility of germline emission to 1 — p. In the HMM implementation, it is trivial to account for dif-
ferent probabilities of mutating to different bases (instead of simply using f/3 for all three).
However, we do not know of phylogenetic sequence simulation software (we use bppseqggen
from Bio++ [53]) that implements both this and per-position mutation rates, and thus lacking
reliable means of validation for this feature we leave it out.

Transition probabilities are set according to empirical frequencies of inferred exonuclease
deletion and N-region lengths. For example, again sub-setting by allele, the frequency with
which we observe a 3’ exonuclease deletion of length one gives us the transition probability
from the second-to-last state in this allele to the end state (thereby bypassing the last state in
the allele). This logic is repeated for all positions in each allele, and also for the 5" end (where
instead of a transition to the end state, it is a transition from the initial state). Note that we
include 5° V and 3’ D exonuclease deletions as a convenience (dashed lines in Fig 11) to account
for varying read lengths. The N-region state self-transition probability is set to the inverse of
the observed mean N-region length in data, and thus N-region lengths are modeled according
to a geometric distribution with the correct mean length. While the choice of a geometric dis-
tribution is simply a result of HMMs’ inherent lack of memory, in practice we observe that N-
region lengths are not far from geometrically distributed (Fig 4).

Finally, the allele choice probabilities denoted g, above are simply set to the observed fre-
quency of each allele.

For all parameters, we perform an initial estimation step using the Smith-Waterman based
methods of [38]. These provisional parameters are used to build a set of HMMs which we then
run on the same data in order to obtain a more accurate set of parameters. We can feed these
parameters back into the HMM and continue the process recursively (this is Viterbi training i