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SUMMARY

HIV-1 resulted from cross-species transmission of
SIVcpz, a simian immunodeficiency virus that natu-
rally infects chimpanzees. SIVcpz, in turn, is a re-
combinant between two SIV lineages from Old
World monkeys. Lentiviral interspecies transmis-
sions are partly driven by the evolution and capacity
of viral accessory genes, such as vpx, vpr, and vif, to
antagonize host antiviral factors, such as SAMHD1
and the APOBEC3 proteins. We show that vpx,
which in other lentiviruses antagonizes SAMHD1,
was deleted during the creation of SIVcpz. This
genomic deletion resulted in the reconstruction of
the overlapping vif gene by ‘‘overprinting,’’ creating
a unique vif that overlaps in its 30 end with the vpr
gene and can antagonize hominid APOBEC3s.
Moreover, passage of SIVs through chimpanzees
facilitated the subsequent adaptation of HIV-1 to
humans. Thus, HIV-1 originated through a series of
gene loss and adaptation events that generated its
chimpanzee precursor and lowered the species bar-
rier to human infection.

INTRODUCTION

HIV-1 is the result of cross-species transmissions of simian im-

munodeficiency viruses (SIVs) from African apes to humans.

SIVcpz strains from chimpanzees (Pan troglodytes) were trans-

mitted on at least two occasions to humans, including the

cross-species transmission of the precursor of HIV-1 group M

that spawned the current AIDS pandemic (Keele et al., 2006;

Sharp and Hahn, 2011). SIVcpz, in turn, originated from inter-

species transmissions and recombination events involving the

ancestors of at least two distant SIV lineages: SIVrcm from

red-capped mangabeys (RCMs) and SIVmus/mon/gsn from

Cercopithecus monkeys (Bailes et al., 2003). Although the

adaptation of lentiviruses from chimpanzees to humans has

been described (Kirchhoff, 2010), the adaptive processes
C

involved in the transmission of SIVs from monkeys to chimpan-

zees, which underlie the ultimate origin of HIV-1, are not well

understood.

Host susceptibility to viral infections and the likelihood of

lentiviral transmission from one primate species to another

are partially governed by the antiviral proteins produced by

the innate immune system of the host. These proteins, also

called restriction factors, inhibit different stages of lentiviral

replication and are usually counteracted in a species-specific

manner by viral accessory proteins (Duggal and Emerman,

2012). One well-described antagonism is the degradation of

the host cytidine deaminase APOBEC3G protein (A3G) by the

viral infectivity protein Vif (Bishop et al., 2008; Mangeat et al.,

2003; Sheehy et al., 2002). In the absence of Vif, A3G is pack-

aged into assembling virions and transferred to target cells,

where it produces hypermutation in the viral genome. How-

ever, during infection, Vif interacts with A3G and recruits it to

a ubiquitin ligase complex to target A3G for proteasomal

degradation, which prevents the encapsidation of A3G and

eventually allows viral replication in the new target cells. A

more recently identified virus-host antagonism is the degrada-

tion of the host protein SAMHD1 by the accessory proteins

Vpx and Vpr to allow the virus to efficiently infect myeloid

and resting T cells (Baldauf et al., 2012; Hrecka et al., 2011;

Laguette et al., 2011; Lim et al., 2012). The capacity to antag-

onize the host SAMHD1 was acquired by the vpr gene during

primate lentiviral evolution. Subsequently, the recombination/

duplication of the vpr gene led to the acquisition of a vpx

gene in SIVrcm and SIVsmm from sooty mangabeys (Lim

et al., 2012). The two viral lineages that recombined to give

rise to SIVcpz have the capacity to degrade their respective

SAMHD1 proteins: SIVrcm uses its Vpx protein, whereas mem-

bers of the SIVmus/mon/gsn lineage use their Vpr protein

(Lim et al., 2012). In contrast, neither HIV-1 nor SIVcpz, its

immediate precursor, have the ability to degrade SAMHD1

because they do not encode a vpx gene, and their Vpr

protein does not antagonize SAMHD1 (Laguette et al., 2011;

Lim et al., 2012). Thus, one seemingly important function to

antagonize a host restriction factor was lost during the process

of primate lentivirus adaptation from monkeys to hominids,

but the mechanism and the reason for this loss remain

unknown.
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Gene Loss and Adaptation at the Genesis of SIVcpz
Here, we analyzed the viral genomic reorganization and

functional consequences that occurred during the transmission

of lentiviruses from Old World monkeys (OWMs) to hominids in

order to understand the selective pressures that led to the ulti-

mate origin of HIV-1 strains. We found that the vpx gene was

entirely lost during the birth of SIVcpz and led to the absence

of vpx in HIV-1. Furthermore, this loss was associated with

the reconstruction of the overlapping vif gene. This Vif protein,

which is unique to SIVcpz and its descendants, gained the

function to fully antagonize the hominid A3G proteins. Finally,

we found that chimpanzees represented a means for a primate

lentivirus to adapt to hominids, which was likely essential for

their subsequent transmission to humans. Our study elucidates

how the HIV-1 lineage that led to the emergence of a pandemic

virus in the human population had its ultimate origin in a

monkey-to-hominid cross-species transmission that involved

the loss of a viral gene, the creation of a distinctive 30 end

region to an existing gene, and subsequent adaptation in

chimpanzees.

RESULTS

The Absence of vpx in HIV-1 Results from the Loss of the
Entire Gene during the Genesis of SIVcpz
Previous phylogenetic analyses of the SIVcpz genome showed

that vif and vpr, among other genes, originated from an ancient

SIVrcm-like virus, whereas vpu and env genes came from an

ancient SIVmus/mon/gsn-like strain (Sharp and Hahn, 2011),

and we confirmed these conclusions by analyses that included

all of the SIV lineages characterized to date (data not shown).

However, SIVrcm encodes for a vpx gene between vif and vpr,

whereas vpx is absent in SIVcpz (Figure 1A). Thus, we asked

how and why the vpx gene came to be absent in SIVcpz. We first

considered the possibility that the ancestor of the modern-day

SIVrcm lacked the vpx gene when it crossed to chimpanzees.

Therefore, we analyzed an alignment of the surrounding regions

of vpx to look for any evidence of a recent vpx gene transfer to

SIVrcm (details of the hypotheses and analyses are in Figure S1

available online). The absence of recombination marks and the

phylogenetic tree topologies revealed a lack of evidence for

any vpx gene transfer between SIVsmm and SIVrcm, showing

that vpx was acquired by the SIVrcm and SIVsmm lineages

before they diverged (Figure S1). This indicates that the

SIVrcm-like strain, which recombined with a SIVmus-like strain

to give rise to SIVcpz, encoded a vpx gene between vif and

vpr. Thus, SIVcpz lost the vpx gene from the ancestral SIVrcm-

like virus.

We then considered two main scenarios for how the vpx gene

was lost during the origin of SIVcpz (Figure 1A). In scenario 1,

recombination occurred between the paralogous genes vpr

and vpx, leading to just one gene in SIVcpz, where the 50 end
derives from SIVrcm vpx and the 30 end derives from SIVrcm

vpr. In scenario 2, the entire vpx was deleted in SIVcpz, but

the vpr gene from SIVrcm remained completely intact (Fig-

ure 1A). The difference between these two scenarios is impor-

tant because Vpr and Vpx perform different functions (Ayinde

et al., 2010), and recombination between the genes (scenario

1) would imply that some of the functional domains of both

genes were conserved, whereas direct deletion of vpx (scenario
86 Cell Host & Microbe 14, 85–92, July 17, 2013 ª2013 Elsevier Inc.
2) would imply that only the functions of one gene, vpr, were

conserved.

We found multiple lines of evidence indicating that scenario 1

is not plausible, but scenario 2 is very likely. First, phylogenetic

analysis of Vpr and Vpx from diverse SIVs showed that SIVcpz

Vpr is closely related to SIVrcm Vpr, and both cluster distantly

from SIVrcm Vpx (Figure 1B). Second, if SIVcpz Vpr was a

recombinant between SIVrcm Vpx and Vpr (scenario 1), one

would expect the N-terminal (N-ter) region of SIVcpz Vpr to

show more similarity to Vpx than to Vpr (Figure 1A). However,

when we aligned sequences of SIVcpz Vpr with sequences of

SIVrcm Vpr and Vpx, we found that this was not true, and instead

the N-ter of SIVrcm and SIVcpz Vpr shared higher similarity (the

SIVcpz vpr gene has 54% identity with SIVrcm vpr versus 39%

with SIVrcm vpx; Figure 1C). Third, we found neither evidence

of ancient recombination events within SIVcpz vpr, nor any

remnant genomic region of SIVrcm vpx in SIVcpz (see Experi-

mental Procedures). These results exclude the first scenario of

recombination between vpr and vpx, and favor a scenario in

which the entire vpx gene was lost in SIVcpz.

The Loss of vpx Led to the Creation of a vifwith a Unique
30 Terminal Region by ‘‘Overprinting’’
To determine the extent of the deletion that led to the loss of vpx,

the impact on the overlapping genes, and the associated

genomic modifications, we analyzed the region spanning vif,

vpx, and vpr. In SIVrcm, the 50 end of vpx overlaps with the 30

end of vif by �160 bp (Figure 2). However, in SIVcpz, we found

that the loss of vpx led to the loss of this entire overlapping

region, including the stop codon for vif (Figure 2). Thus, we spec-

ulated that the 30 end truncation of the vif gene led to its recon-

struction in an alternate reading frame of the vpr gene by amech-

anism called ‘‘overprinting.’’ Overprinting is the process by

which a sequence that originally encodes for only one protein

undergoes modifications leading to an additional second open

reading frame (ORF) (Keese and Gibbs, 1992). Indeed, we found

that during the recombination events that generated SIVcpz, the

30 end of vif was reconstituted by overprinting of the 50 end of

SIVrcm vpr (ORF 2; Figure 2). Here, in frame 3 of SIVrcm (shown

in dark purple in Figure 2, top), a pre-existing stop codon within

the SIVrcm vpr gene (but not in-frame with SIVrcm vpr) served as

the stop codon for SIVcpz vif after the deletion of vpx from

SIVrcm (Figures 2 and S2). Hence, in SIVcpz, the 30 end of vif

(the overprinting region) overlaps with the 50 end of vpr by

�61 bp in an alternative reading frame (dark purple, Figure 2).

Furthermore, upstream of the overprinting region of SIVcpz vif,

a sequence of 60–75 bp in SIVcpz was created (light purple, Fig-

ure 2) for which we could find no homology with any genomic

region of SIVrcm or to any other nucleotide sequence present

in any sequenced primate genome or lentivirus (see Experi-

mental Procedures). These Vif sequences are unique to SIVcpz

and its related strains, SIVgor and HIV-1. Importantly, this frag-

ment harbors the ‘‘cullin box,’’ which includes the PPLP motif

and surrounding residues that are highly conserved in HIV-1

and are necessary for HIV-1 Vif to efficiently degrade human

A3G (Bergeron et al., 2010; Donahue et al., 2008; Walker et al.,

2010). Thus, SIVcpz Vif and therefore HIV-1 Vif acquired a unique

C-terminal (C-ter) domain with sequences important for their

protein function during the loss of Vpx.
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Figure 1. The Entire vpx Gene Was Lost in the Lineage that Gave Rise to SIVcpz, SIVgor, and HIV-1

(A) Two possible scenarios leading to the absence of vpx in SIVcpz. Only the region of interest spanning vif, vpx, and vpr is detailed. The horizontal dashed line

represents the transmission fromRCMs (top) to chimpanzees (bottom). The potential recombination breakpoints of interest are represented by plain stars and the

vpx gene is highlighted by striped lines. In the SIVcpz genome, the dotted regions correspond to the vpu gene and the env gene that originated fromSIVmus/mon/

gsn-like viruses. The numbers correspond to the three reading frames.

(B) Vpr from SIVcpz is more closely related to SIVrcm Vpr than to SIVrcm Vpx or SIVmus Vpr. The phylogenetic analysis was performed from an alignment of full-

length Vpr and Vpx from various SIVs (trimmed alignment of 76 amino acids). The name and accession number of each SIV are at the tip of each branch.

Sequences were retrieved from http://www.hiv.lanl.gov. The asterisks show bootstrap values superior to 85%.

(C) The N-ter region of SIVcpz Vpr is closely related to the N-ter region of SIVrcm Vpr. The amino acid alignment of full-length SIVcpz Vpr, SIVrcm Vpr, and SIVrcm

Vpx is shown. See also Figure S1.
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SIVrcm vif Adapted to Efficiently Antagonize
Chimpanzee A3G and A3D, but SAMHD1 Antagonism
Was Not Retained
The capacity of Vif to antagonize the host A3G is a feature that is

conserved throughout SIVs and primates; however, this antago-

nism is often species specific (Compton and Emerman, 2013).

We hypothesized that the loss of vpx during the birth of SIVcpz

was driven by selection for changes in the overlapping reading

frame that encodes Vif, i.e., the ability of Vif to antagonize chim-

panzee A3G was of greater importance than the need to retain

Vpx for the purpose of SAMHD1 antagonism. In support of this

hypothesis, we found that neither SIVrcm Vpx nor SIVrcm Vpr

was able to degrade the chimpanzee SAMHD1 (Figure 3A),

although, as expected (Lim et al., 2012), SIVrcm Vpx, but not

SIVrcm Vpr, had the capacity to degrade SAMHD1 from RCMs
C

(Figure 3A). Thus, the absence of SAMHD1 antagonism presum-

ably had little consequence for the initial transmission of SIV from

monkeys to chimpanzees.

We therefore tested whether the deletion in vpx was impor-

tant for the adaptation of vif to antagonize chimpanzee A3G.

First, we tested the ability of SIVrcm Vif to antagonize chim-

panzee A3G. We found that although Vif from SIVrcm was

potent at antagonizing its own host A3G (Figure 3B, top in

plain green), it was only able to partially counteract the antiviral

effects of chimpanzee A3G (16% rescue versus 100% for

SIVcpz Vif; Figure 3B, bottom plain green versus purple).

Degradation assays further confirmed that SIVrcm and

SIVcpz Vifs efficiently degraded RCM and chimpanzee A3Gs,

respectively, whereas neither Vif degraded the heterologous

A3G (Figures 3C and 3D). Thus, SIVrcm Vif needed to adapt
ell Host & Microbe 14, 85–92, July 17, 2013 ª2013 Elsevier Inc. 87
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Figure 2. The Loss of vpxHadMajor Conse-

quences for vif

The 30 end of SIVrcm vif was reconstructed when

SIVrcm vpx was lost during the birth of SIVcpz.

Representations of SIVrcm (top) and SIVcpz (bot-

tom) genomes in the region spanning the vif, vpx

(striped arrow), and vpr ORFs. The approximate

length of each protein is given. The reading frames

(1–3) are given on the left and the proteins are

represented by large plain arrows. Green stands

for proteins and nucleotides related to SIVrcm,

dark purple stands for sequences that were not

expressed in SIVrcm but were in an ORF in SIVcpz

(overprinting region), and light purple stands for

new amino acids in SIVcpz. Asterisks are stop

codons. Gene overlaps and important nucleotide

and amino acid motifs or regions are shown. The

dashed lines represent breakpoints. The white

lines in the 50 region of the arrows indicate regions

that were cut for representation purposes only. aa,

amino acids. See also Figure S2.
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to efficiently antagonize chimpanzee A3G and gain full

infectivity.

We found that, alone, the unique C-ter part of SIVcpz Vif that

was reconstructed upon the loss of vpx was not sufficient to

rescue the infection in the presence of chimpanzee A3G (Fig-

ure 3B, chimera1). However, this C-ter domain of SIVcpz Vif

was essential for the protein function, as its replacement with

the C-ter part of SIVrcm Vif led to a chimera that had no activity

against A3G (Figure 3B, chimera2). Changes in SIVrcm Vif to

any of the conserved N-ter motifs from SIVcpz/HIV-1 Vif that are

essential for Vif function (reviewed in Malim and Bieniasz, 2012;

FigureS3A) led tochimericVifs that lost their activity against chim-

panzee A3G but retained their activity against RCM A3G (Fig-

ure S3B). Thus, the domains in SIVrcm Vif that are required for

the degradation of chimpanzee A3G and RCM A3G are distinct

and nonlinear, and changes at both the N-ter and C-ter of SIVrcm

Vif were needed to fully gain chimpanzee A3G antagonism.

We also investigated whether SIVrcm Vif needed to adapt to

antagonize other genes from the chimpanzee APOBEC3 family.

We found that SIVrcm Vif has the capacity to antagonize both

chimpanzee A3F and A3H (Figure 3E). Therefore, chimpanzee

A3F and A3H did not represent barriers for SIVrcm-like strains

to jump to chimpanzees. On the other hand, SIVrcm Vif did not

antagonize chimpanzee A3D (Figure 3E). Chimpanzee A3D is

particularly interesting because it gained increased antiviral ac-

tivity against some lentiviruses due to positive selection in this

gene in the chimpanzee-bonobo lineage (Duggal et al., 2011).

Thus, SIVrcm Vif needed to adapt to fully antagonize chim-

panzee A3G and A3D, and the deletion of vpx may have been

required for these changes to take place.

Chimpanzees as a ‘‘Passage’’ for Lentiviruses to Human
Infection
The only lentiviruses that are known to have directly transferred

from OWMs to humans are strains of SIVsmm from sooty man-
88 Cell Host & Microbe 14, 85–92, July 17, 2013 ª2013 Elsevier Inc.
gabeys, which gave rise to HIV-2 (Gao

et al., 1992; Santiago et al., 2005). Inter-

estingly, Vif from SIVsmm is pre-equip-
ped to counteract human A3G (Compton and Emerman, 2013).

Because SIVrcm and SIVmus never crossed to humans, as

opposed to their recombinant progeny, SIVcpz, we hypothe-

sized that passage through chimpanzees was a determinant

step for vif to adapt to humans. Thus, we sought to determine

whether adaptation of SIV Vif to human A3G antagonism

occurred during the transfer from chimpanzees to humans or

during the adaptation to chimpanzees. We found that SIVcpz

Vif rescued the infection to levels similar to those observed for

HIV-1 Vif in the presence of human A3G, and that it could effi-

ciently degrade the host protein (Figure 4A, left panel), consistent

with previous studies (Gaddis et al., 2004). On the other hand, we

found that SIVrcm Vif, as well as SIVmus Vif, had very little

capacity to rescue the infection (<10%) in the presence of human

A3G (Figure 4A, left panel) as comparedwith SIVcpz or HIV-1 Vifs

(p < 0.0001). Hence, human A3G is a hurdle for SIVrcm and

SIVmus, but not for SIVcpz. Furthermore, SIVrcm and SIVmus

Vifs were better at antagonizing chimpanzee A3G than human

A3G (Figure 4A, comparing right and left panels; 3-fold difference

in infectivity, p < 0.005). Thus, the adaptive hurdle frommonkeys

to chimpanzees appears to be lower than the barrier directly

from monkeys to humans for SIVs, such as SIVrcm or SIVmus,

to overcome A3G antagonism. Therefore, the chimpanzee-

adapted Vif that was pre-equipped to antagonize human A3G

may have been a path to transmission to humans.

DISCUSSION

In this work, we studied the deep origins of HIV-1 by investigating

the gene loss and adaptations that occurred during and after len-

tiviruses were transferred from monkeys to chimpanzees to

create SIVcpz. Specifically, we found that (1) the SIVrcm vpx

gene was lost in its entirety upon adaptation to chimpanzees;

(2) the loss of vpx was associated with the creation of a unique

vif region by overprinting; (3) Vif adapted to antagonize
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chimpanzee APOBEC3 proteins, including A3G and A3D; and (4)

the chimpanzee-adapted lentivirus was more efficient than its

monkey ancestors at antagonizing human restriction factors

such as A3G (Figure 4B). Thus, lentiviral gene loss and adapta-

tions in the chimpanzee host were at the origin of the human

HIV-1 pandemic.

Although SAMHD1 antagonism by the vpx or vpr genes is

conserved in many lentiviruses (Lim et al., 2012), we found that

this function is not strictly necessary for viral adaptation to

hominids. It was previously hypothesized that the ancestral

SIVcpz had a vpx gene and was transmitted from chimpanzees

to RCMs and mandrills, giving rise to SIVrcm(Vpx+) and

SIVmnd2(Vpx+), respectively, and that subsequently SIVcpz

lost its vpx gene in its natural host (Zhang et al., 2012). However,

this scenario is not plausible because the ancestor of SIVrcm

and SIVsmm acquired the vpx gene prior to their divergence

and prior to the jump of SIVs from RCMs to chimpanzees

(Figure S1).

It is remarkable that a viral antagonist to a host protein could

be lost from the viral genome, since one would have expected

the adaptation of Vpx to counteract the new host SAMHD1

(Lim et al., 2012). However, the selective pressure during the

cross-species jump from OWMs to chimpanzees may have

favored the maintenance of a virus in which a poorly active

gene was lost by recombination but a critical function in an over-

lapping gene was restored or gained. Vif adaptation to chim-

panzee APOBEC3s may have been more critical than Vpx adap-

tation to chimpanzee SAMHD1. This suggests that the A3

proteins are a more potent selective force in the transmission

of lentiviruses than SAMHD1. Finally, it is possible that SIVcpz

acquired functions to compensate for the absence of Vpx-driven

antagonism of SAMHD1, and that these adaptations have

increased pathogenicity in the HIV-1 lineage.

The loss of vpx together with additional modifications led to a

unique viral vif gene. However, the origin of the region that

includes the cullin box in SIVcpz/HIV-1 Vif is unknown. It is

possible that these sequences arose during the vif reconstruc-

tion associated with the species jump, or they may have also

been acquired later. Although SIVcpz, SIVgor, and HIV-1 Vifs

harbor a cullin box with a highly conserved PLP motif, most

SIV Vifs harbor a very divergent cullin box that has a distinct

evolutionary history, which explains why HIV-1 has a distinctive

way to antagonize human A3G compared with HIV-2 and other

SIVs (Barraud et al., 2008; Gaur and Strebel, 2012). Although

SIVsmm, which crossed to humans, harbors a Vif with such a

divergent C-ter domain, its Vif and Vpx were pre-equipped to

antagonize human A3G and SAMHD1, respectively (Compton

and Emerman, 2013; Hrecka et al., 2011). Whether the unique

cullin box in Vif from the SIVcpz/HIV-1 lineage has a distinctive

role remains to be addressed, but in any case, the passage of

the SIVrcm/SIVmus-like recombinant to hominids was not as

easy as the passage of SIVsmm to humans. Furthermore, we

found that mutations in both the N- and C-ter domains of Vif

were necessary to gain full chimpanzee A3G antagonism. Since

an SIVrcm Vif with only the C-ter reconstruction of SIVcpz Vif

(analogous to chimera1 in Figure 3) is poorly active against chim-

panzee APOBEC3 proteins, the deletion of vpxmay have put the

intermediate virus into a fitness valley from which it could have

recovered only with additional N-ter mutations in Vif. However,
C

it is also possible that an ancestral version of SIVrcm Vif already

harbored a Vif with an N-ter domain that directly provided full ac-

tivity to Vif after its C-ter reconstruction in SIVcpz.

Due to species specificities in virus-host interactions and an-

tagonisms, lentiviruses need to adapt to the new host proteins

before they can efficiently infect a new species. This jump is

easier to make when the virus is pre-equipped to antagonize

the recipient species’ restriction factors (e.g., human A3G is

not a barrier for SIVcpz). However, we further confirmed that

human A3G cannot be counteracted by SIVs from most

OWMs, with the exception of SIVsmm,which crossed to humans

onmultiple occasions (Compton and Emerman, 2013; Gao et al.,

1992; Santiago et al., 2005). Thus, human A3G appears to pose a

major hurdle for SIVs from most OWMs, limiting their transfer to

humans. On the other hand, viruses such as SIVrcm and SIVmus

have some activity against chimpanzee A3G, which may have

played a key role in enabling their jump to apes by allowing an

initial poorly efficient viral infection followed by viral adaptation

in the new host. Since A3G has been under strong positive selec-

tion in the human genome after the divergence of Pan andHomo

due to an unknown selective pressure (Sawyer et al., 2004), it is

possible that this evolution led to a variation in human A3G that is

more poorly recognized by monkey SIVs than chimpanzee A3G.

Therefore, the chimpanzee host may have constituted an inter-

mediary in the adaptive processes that allowed certain OWM

lentiviruses to infect humans. Although adaptation in the chim-

panzee host does not provide adaptation to all human proteins

(e.g., SIVcpz is not pre-equipped to antagonize human Tetherin;

Sauter et al., 2009), we propose that SIV adaptation to chim-

panzee restriction factors reduced both the number and size of

the hurdles for cross-species transmission to humans, which

favored a successful viral emergence in the human population.

In summary, it is possible to trace back many of the ancient

genetic events in the evolution of primate lentiviruses that ulti-

mately led up to the emergence of HIV-1 (Figure 4B), and the ad-

aptations that occurred during the cross-species transmissions

leading to SIVcpz in chimpanzees reveal the functional origins

of the pandemic HIV-1 in humans.

EXPERIMENTAL PROCEDURES

Plasmids

SAMHD1, Vpr, and Vpx expression plasmids were previously described (Lim

et al., 2012). Apobec3 and recombinant HIV-1 proviral plasmids were con-

structed as detailed in the Supplemental Experimental Procedures.

Transfection and Western Blot Analysis for the SAMHD1-Vpr/Vpx

Study

293T cells were transfected with 100 ng of SAMHD1 expression plasmid with

or without 100 ng of Vpr/Vpx constructs using TransIT-LT1 transfection re-

agent (Mirus Bio). The amounts of transfected Vpr/Vpx and SAMHD1 expres-

sion plasmid were normalized for similar protein expression, but the total

quantity of transfected DNA was maintained constant. Cells were harvested

48 hr posttransfection for western blot analysis as previously described (Lim

et al., 2012). Details of the antibodies are provided in Supplemental Experi-

mental Procedures.

Single-Round Viral Infectivity Assay and Western Blot Analysis for

the A3-Vif Study

293T cells were transfected with 400 ng of A3 plasmid or an empty pcDNA3.1

vector, 200 ng of L-VSV-G (the fusogenic envelopeG glycoprotein of the vesic-

ular stomatitis virus used for pseudotyping), and 600 ng of proviral plasmid
ell Host & Microbe 14, 85–92, July 17, 2013 ª2013 Elsevier Inc. 89
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Figure 3. SIVrcm Vif Adaptation to the Hominid APOBEC3 proteins

(A) VpxandVpr fromSIVrcmdonotdegradechimpanzeeSAMHD1. Theability ofSIVrcmtodegradeSAMHD1wasassayedbywesternblot analysesof hemagglutinin

(HA)-tagged SAMHD1 from RCM (rcm) or chimpanzee (chimp) (+, presence; �, empty plasmid) cotransfected with or without 3xFLAG-tag Vpr or Vpx from

SIVrcmNG411. Tubulin was probed as a loading control.

(B) SIVrcmVif has some activity against chimpanzeeA3G to rescue viral infection, but adaptionswere needed for full antagonism.Single-round infectivity assayswere

performed in the presence or absence of A3G; infectivity in the absence of A3G was normalized to 100%. Infectivity values (in percentage) are the average of six

infections; errorbars indicate theSDfromthemeanof these replicates. Infectivity ofHIV-1DVif (lightgray) andHIV-1expressingSIVrcmCM8081Vif (green), SIVcpzTan3

Vif (purple), or chimeric Vifs were tested against RCM A3G (top) or chimpanzee A3G (bottom). Constructs are depicted on the left, with SIVrcm and SIVcpz Vif

fragments in green and purple, respectively, and with the PLPmotif and the region of Vpr or Vpx overlap shown (‘‘Vpr over’’ or ‘‘Vpx over’’) for chimera1 and chimera2.

(legend continued on next page)
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Figure 4. The Deep Origin of HIV-1 Lies in

the Passage of OWM SIVs in the Chim-

panzee Host and in the Evolution of vif and

vpx

(A) Chimpanzee as a passage to human infection

for OWM SIVs. Top panel: single-round infectivity

assayswere performed in the presence or absence

of A3G as described in Figure 3. The graphs show

the result for theaverageof six infections; error bars

indicate the SD from the mean of these replicates.

The infectivity of HIV-1DVif (gray, negative control)

and HIV-1 plasmid with inserted HIV-1 LAI Vif

(black); SIVcpzPtsTan3, SIVcpzPtsTan13,

SIVcpzPttMB66, and SIVcpzPttGab1 Vifs (purple);

and SIVrcmCM8081 and SIVmus1CM1085 Vifs

(green) was tested against human (left) or chim-

panzee (right) A3Gs.HIV-1andSIVcpzVifs serveas

positive controls against human and chimpanzee

A3G, respectively. All Vifswere expressed at a level

sufficient for their anti-A3G activity. ***p < 0.0001,

##p < 0.005, statistical difference by Mann-Whit-

ney test. Lower panel: western blot analyses

against HA-tagged A3G (left: human; right: chim-

panzee) were performed on 293T cells co-

transfected with the corresponding Vif constructs.

Tubulin was probed as a loading control.

(B) The deep origin of HIV-1 is associated with the

evolution of the accessory genes vpx and vif as a

result of host antiviral gene-selective pressure.

Shown is a representation of primate lentiviral

evolution, highlighting major events that ultimately

played a role in the origin of HIV-1. The main ge-

netic events associated with vpx and vif are de-

picted along with SAMHD1 and A3G antagonism

gain and loss. Green and positive signs are asso-

ciated with a gain of function or gene acquisition/

evolution, and red and negative signs are associ-

ated with a loss of function or gene loss.

Cell Host & Microbe

Gene Loss and Adaptation at the Genesis of SIVcpz
with various Vif genes, using TransIT-LT1. The virus supernatants and the cells

were harvested 48 hr posttransfection. Each transfection condition was per-

formed in duplicate in independent experiments. The total amount of virus in

the supernatant was quantified by p24 Gag ELISA (Advanced Bioscience Lab-

oratories). SupT1 cells plated at 0.4 M cells/ml in the presence of 20 mg/ml

diethylaminoethyl-dextran were infected with 2 ng of virus. Infections were

performed in triplicate for 72 hr and luciferase activity was measured with

the Bright-Glo Luciferase Assay Reagent (Promega). Statistical analyses

were performed with the Mann-Whitney test. The harvested cells were used

for western blot analyses.

Molecular Sequence Analyses

Alignments were performed using Muscle (Edgar, 2004) or FSA (Bradley et al.,

2009), and minor adjustments were done when necessary. Maximum-likeli-

hood trees were constructed using PhyML (Guindon et al., 2010) with 1,000

bootstrap replicates and the GTR model with four gamma rate categories.

Recombination analyses were performed using GARD from Datamonkey

(Kosakovsky Pond et al., 2006) and the PHI test (Bruen et al., 2006) imple-

mented in SplitsTree (Huson and Bryant, 2006). The p value cutoff for any
(C) SIVrcm Vif does not degrade chimpanzee A3G. Western blot analysis agains

cotransfected with HIV-1DVif, and HIV-1 expressing SIVcpzTan3Vif and SIVrcmC

(D) Vif expression. Western blot analyses against FLAG-tagged Vifs from the HIV

chimeras correspond to B). Similar Vif expression relative to tubulin is shown.

(E) SIVrcm was pre-equipped to antagonize chimpanzee A3F and A3H, but not A3

APOBEC3 family proteins, as described in (B). Left: chimpanzee A3F; middle: A3

error bars indicate the SD from the mean of these replicates. See also Figure S

C

evidence of recombination was set at 0.1. We used BLAST (Altschul et al.,

1990), hmmer amino acid HMM search, and nhmmer (Eddy, 2011; Finn

et al., 2011) to search for the origin of the 60–75 bp fragment in vif that is

only present in the SIVcpz/HIV-1 lineage, first by looking in all sequences avail-

able in the NCBI database, and thenmore deeply by restricting the analyses to

primate and SIV genomes (excluding this short fragment of the SIVcpz/HIV-1

lineage).
SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures and Supplemental Experi-

mental Procedures and can be found with this article online at http://dx.doi.
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