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Abstract—Tree shape statistics quantify some aspect of the shape of a

phylogenetic tree. They are commonly used to compare reconstructed trees to

evolutionary models and to find evidence of tree reconstruction bias. Historically,

to find a useful tree shape statistic, formulas have been invented by hand and then

evaluated for utility. This paper presents the first method which is capable of

optimizing over a class of tree shape statistics, called Binary Recursive Tree

Shape Statistics (BRTSS). After defining the BRTSS class, a set of algebraic

expressions is defined which can be used in the recursions. The set of tree shape

statistics definable using these expressions in the BRTSS is very general and

includes many of the statistics with which phylogenetic researchers are already

familiar. We then present a practical genetic algorithm which is capable of

performing optimization over BRTSS given any objective function. The chapter

concludes with a successful application of the methods to find a new statistic

which indicates a significant difference between two distributions on trees which

were previously postulated to have similar properties.

Index Terms—Biology and genetics, evolutionary computing, genetic algorithms.
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1 INTRODUCTION

TREE shape statistics are numerical summaries of some aspect of
the shape of a phylogenetic tree. The first tree shape statistic was
the �N of Sackin [1], where the explicit goal was to numerically
describe the balance of a tree, which is the degree to which
daughter subtrees of internal nodes are of similar or different size.
Trees which are balanced have smaller �N than do trees which are
imbalanced. Many other tree shape statistics followed, all
quantifying balance; a review of this literature can be found in
the excellent review article by Mooers and Heard [2].

The next important step in tree shape theory was made by
Kirkpatrick and Slatkin [3], who wondered which statistics were
the most powerful to distinguish between the so-called ERM and
PDA distributions on trees. The statistics which they chose to rate
included most of the statistics available in the literature at that
time. Their article is among the most influential in the area of tree
shape, with more than 60 citations as of March 2006 (ISI Web of
Knowledge search, http://portal.isiknowledge.com/).

The article by Kirkpatrick and Slatkin marked a philosophical
shift from the idea of a tree shape statistic as a purely descriptive
device to that of a mapping which can be used in a statistical
fashion. Their work was continued more recently by Agapow and
Purvis [4], who took seven tree shape statistics from the literature
and one of their own, then tested them for power in distinguishing
several different models. They then made general recommenda-
tions for which statistics to use.

The next step for the Kirkpatrick-Slatkin methodology needs to
overcome two limitations. First, the statistics which are tested are
typically invented “by hand” and, so, are limited by the ingenuity
of the individual authors. Second, general recommendations may
not be sufficient for all situations in which tree shape statistics are

useful. For example, although a statistic such as Colless’ index [5]
has lots of power in the Kirkpatrick-Slatkin and Agapow-Purvis
scenarios, it has low power to distinguish between two distribu-
tions which have similar overall balance [6].

This paper presents a methodology which enables, for the first

time, direct optimization over tree shape statistics. First, we

present a recursive framework and a class of algebraic expressions

which can be used to define tree shape statistics in a natural way.

These statistics are a large and varied family which include most of

the present-day tree shape statistics. Second, this paper presents a

practical genetic algorithm which, given an objective function, can

be applied to produce high-performance tree shape statistics.

For the purpose of this paper, tree refers to a finite rooted

bifurcating tree without leaf labels or edge lengths.

2 BINARY RECURSIVE TREE SHAPE STATISTICS

2.1 Definition and Examples

This section defines binary recursive tree shape statistics (BRTSS),

which form the framework over which the optimization algorithms

operate. The starting observation for the definition is that many

extant statistics are constructed with reference to their values on

subtrees. For example, the number of leaves of a tree can be

calculated recursively by summing the number of leaves of its two

subtrees. Using XbY to signify a tree with X and Y as subtrees,

one can write this statement as

lðXbY Þ ¼ lðXÞ þ lðY Þ:
One can write a tree shape statistic of this sort by specifying a

“recursion” � and a “base case” �,

sðT Þ ¼ �ðsðXÞ; sðY ÞÞ if T ¼ XbY
� if T is a leaf:

�
ð1Þ

Because XbY ¼ Y bX, the resulting s is well defined if and only if �

is symmetric, i.e., if �ðx; yÞ ¼ �ðy; xÞ. In the above notation, the

number of leaves of a tree can be written as a recursive tree shape

statistic with � ¼ 1 and �ðx; yÞ ¼ xþ y. Another example of this

sort of statistic is the maximal depth of the tree for which � ¼ 0 and

�ðx; yÞ ¼ 1þmaxðx; yÞ.
A remarkable number of useful statistics can be achieved by

varying � and �. However, considerably more can be written using

several mutually recursive statistics. For example, perhaps the

most popular tree shape statistic is the “Colless index” Ic [2], [5].

This index (without a normalizing factor) sums for each internal

node the absolute value of the difference between the number of

leaves of the two daughter subtrees of that internal node. It can be

written as follows:

IcðT Þ ¼
IcðXÞ þ IcðY Þ þ jlðXÞ � lðY Þj if T ¼ XbY
0 if T is a leaf:

�

This version of Ic is constructed from two real numbers (the base

cases) and two functions symmetric in X and Y (the recursions).

This leads to the definition of a BRTSS.

Definition 1. A BRTSS of length n is an ordered pair ð�; �Þ, where

� 2 IRn and � is an n-vector of Symm2ðIRnÞ ! IR maps.

In the definition, Symm2ðIRnÞ denotes the symmetric product of

IRn with itself. The condition that the �i map from the symmetric

product is equivalent to saying that they map IR2n ! IR and are
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invariant under the action exchanging the xis and the yis, i.e., for

any j,

�jðx1; . . . ; xn; y1; . . . ; ynÞ ¼ �jðy1; . . . ; yn; x1; . . . ; xnÞ: ð2Þ

A BRTSS is evaluated on a tree by a generalization of (1).

Recursively define the si by

siðT Þ ¼
�iðs1ðXÞ; . . . ; snðXÞ; s1ðY Þ; . . . ; snðY ÞÞ
�i;

�
ð3Þ

where the first case is used in case T ¼ XbY and the second if T is
a leaf. The final value of the BRTSS on T is simply defined to be

s1ðT Þ. The symmetry property of the �i implies that (3) is well

defined. For this paper, xi (respectively, yi) will be used for the
value of si on the subtree X (respectively, Y ).

The Colless index (without the normalizing factor) can now be

written as a BRTSS of length 2 with the base cases �1 ¼ 0, �2 ¼ 1,
and the two recursions

�1ðx1; x2; y1; y2Þ ¼x1 þ y1 þ jx2 � y2j;
�2ðx1; x2; y1; y2Þ ¼x2 þ y2:

The second recursion �2 for Ic simply totals the value of s2 applied

to subtrees X and Y . With the base case �2 ¼ 1, this implies that s2

gives the number of leaves of the tree as before. The first recursion
�1 adds the absolute value of the difference of s2 applied to the

subtrees to the sum of the values of s1 applied to the subtrees. This

is indeed the (unnormalized) Colless index Ic as described above.
The BRTSS formulation can be used to define many tree shape

statistics from the literature with simple recursive functions �. For
example, we show here how to define the number of two leaf

subtrees of a tree (called the number of “cherries” [7]) and

unnormalized versions of Sackin’s �N [1] and Shao and Skokal’s B1

[8]. The latter two can be defined as follows: Let I denote the

internal nodes and r denote the root of a tree. For i 2 I , let Ni be

the number of leaves of the subtree subtended by i. For a node
j 2 I � frg, let Mj be the maximal depth of the subtree with j as

the root. Then,

�N ¼
X
i2I

Ni B1 ¼
X

j2I�frg
M�1

j : ð4Þ

The above formulas for the number of cherries Ch, �N , and B1,

respectively, can be written in BRTSS form as1

Ch : ðð0; 1Þ; ðx1 þ y1 þ Iðx2 þ y2; 2Þ; x2 þ y2ÞÞ
�N : ðð0; 1Þ; ðx1 þ y1 þ x2 þ y2; x2 þ y2ÞÞ

B1 : ð0; 0Þ; x1 þ y1 þ
1� Iðx2; 0Þ

x2

��

þ 1� Iðy2; 0Þ
y2

; 1þmaxðx1; y1Þ
��

:

In the above, I denotes the binary indicator function, i.e., Iða; bÞ
is one if a ¼ b and zero otherwise. We note that formulae for Ic and
�N similar to the above have been previously published in [9].

The emphasis in this paper will be on BRTSS with reasonably
simple �; however, it is true that any mapping of trees to the real line

can be written as a BRTSS using sufficiently complex �. Begin by

enumerating the (countable) set of trees and define s2ðT Þ to be the
number of a given tree T . This can be written recursively by setting

�2ðx1; y1; x2; y2Þ to be the number of the tree which has the trees

numbered x2 and y2 as subtrees. The function �1 simply gives the
desired value of the statistic on the tree composed of the two

subtrees numbered x2 and y2. This statistic is a BRTSS by definition.

2.2 Verifiably Symmetric Algebraic Expressions

The primary aim of this paper is to demonstrate a system capable
of optimizing over a class of tree shape statistics. The previous
section defined the BRTSS class, which defines a tree shape statistic
in a natural way given a real vector � 2 IRn and �, an n-vector of
Symm2ðIRnÞ ! IR maps. The promised optimization will proceed
by modifying the � and � vectors. Optimizing over n-dimensional
real vectors is a classical subject; however, optimization over such
symmetric maps generally is not. Any class of such Symm2ðIRnÞ !
IR maps could, in principle, be used as a set for enumeration and
optimization; however, a balance must be struck between ease of
optimization and generality. For instance, one could easily use
symmetric linear functions as the underlying recursions and adjust
the coefficients in order to find statistics with desirable properties.
However, this rather restrictive class would exclude all of the
above BRTSS except for l and �N .

The purpose of this section is to introduce a subset of the
Symm2ðIRnÞ ! IR functions which is quite general, though suffi-
ciently simple to be the underlying population for a genetic
algorithm. This subset is functions induced by a class of algebraic
expressions with certain allowed operations and operands. The
challenge lies in ensuring the symmetry property (2).

The basic idea of this class of algebraic expressions, which will
be called verifiably symmetric algebraic expressions, is simple: We
constrain the algebraic expressions to remain the same (up to the
order of operands of commutative operations) after exchanging the
xi for the yi. For example, exchanging x1 for y1 in x1 þ y1 gives
y1 þ x1, which is equivalent to x1 þ y1 after applying the commu-
tative rule for addition. Therefore, x1 þ y1 is considered to be
verifiably symmetric. Similarly, minðx1=y2; y1=x2Þ is also verifiably
symmetric because min is a commutative binary operation. On the
other hand, the algebraic expression 0 � x1 is not verifiably
symmetric even though it induces a symmetric function of x1

and y1. The verifiably symmetric criterion clearly implies that the
induced functions carry the symmetry property (2).

The set of finite verifiably symmetric algebraic expressions is a
convenient set over which optimization is possible. One could use
a larger set of expressions with a more complex notion of
symmetry; however, this might require consideration of the full
problem of simplification of algebraic expressions. The simplifica-
tion of algebraic expressions is a subtle field in itself ([10], [11]) and
thus, generalizing the definitions might not aid our purpose of
finding a simple and useful framework for tree shape statistics.

We now present a more rigorous version of the above
definition.

Definition 2. An algebraic expression on sets C of constants, V of
variables, U of unary operations, and B of binary operations is one of
the following:

. a constant from C,

. the instantiation of a variable from V ,

. a unary operation fromU applied to an algebraic expression, or

. a binary operation from B applied to an ordered pair of
algebraic expressions.

A variable is different than its instantiation: One variable may have
many distinct instantiations. Equality of algebraic expressions is
defined recursively in the natural way.

Note that the standard rules of simplification and equivalence
are not automatic. All binary operations have an order (thus, xþ y
is not equal to yþ x), there is no notion of associativity, and no
simplification is done at this stage.

To construct algebraic expressions for the � of the BRTSS,
this paper uses the integers as the set of constants and
x1; . . . ; xn; y1; . . . ; yn as the set of variables, where n is the length
of the BRTSS. The standard binary operations þ, �, �, and =

will be used, as well as the binary indicator function I,
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exponentiation, and max . Of these, þ, �, I, and max are

considered to be commutative. The unary operations used are

inverse, negation, absolute value, exp , (natural) log , and the

symmetrization of any commutative binary operation, which is

described below. In the following, the term “algebraic expres-

sion” will be used without qualification as C, V , U , and B have

now been fixed. Although the definitions below do not depend

on these choices, the examples will.

Definition 3. Two algebraic expressions R and S are commutatively

equivalent, denoted R ¼c S, if R can be obtained from S by changing

the order of operands in commutative binary operations.

Denote by � the map exchanging xi for yi in the expressions.

Recall that this is the map used to define the symmetry property

(2) of the � in the definition of the BRTSS.

Definition 4. An algebraic expression E is verifiably symmetric if

E ¼c �ðEÞ.

Given the choice of operations, examples of verifiably symmetric

algebraic expressions can be found in the above definitions of

Ch, �N , and B1. However, the expression jx2 � y2j in Ic is not

verifiably symmetric using our choice of operations even though

the usual algebraic simplification leads to equivalence between

jx2 � y2j and its image under �. Of course, if we had decided to

include the absolute value of a difference as a commutative

binary operation in the set B, then jx2 � y2j would be considered

verifiably symmetric. Nevertheless, jx2 � y2j can be written

maxðx2 � y2; y2 � x2Þ, which is verifiably symmetric. Therefore,

Ic can indeed be written as a BRTSS with verifiably symmetric

recursions using the above choice of operations.
Because of the strict hierarchy of containment set up by the

definition of algebraic expressions, the notions of subexpression

and smallest expression containing a subexpression are well

defined.

Definition 5. The minimal fixed expression Mðz;EÞ of the

instantiation z of a variable appearing in a verifiably symmetric

algebraic expression E is the smallest subexpression of E containing z

which is verifiably symmetric.

For example, Mðx1; 2 � logðminðx1; y1ÞÞ is minðx1; y1Þ.
A minimal fixed expression clearly cannot be a constant.

Because it is verifiably symmetric, it cannot be a variable

instantiation. By minimality, it cannot be a unary operation

applied to a subexpression. Therefore, it must be of the form

Ez ? F , where the variable instantiation z is contained in Ez and ? is

a binary operation.
Furthermore, since �ðEz ? F Þ ¼c Ez ? F , either �ðEzÞ ¼c Ez or

�ðEzÞ ¼c F . The first option is not possible: Otherwise, Ez ? F

would not be minimal. Therefore, the minimal fixed expression

Mðz;EÞ of any instantiation z is of the form Ez ? F , where z is

contained in Ez and �ðEzÞ ¼c F . This further implies that ? is

commutative. Because of the symmetry, it is possible to only store

one “side” of the minimal fixed expression, the other side being

available through �. In the following terminology, any minimal

fixed expression is commutatively equivalent to an expression

written with a symmetrization:

Definition 6. The symmetrization S?ðEÞ of an expression E with

respect to a commutative binary operation ? is E ? �ðEÞ.

For example, x1 þ y1 can be written Sþðx1Þ and maxðx1 �
y1; y1 � x1Þ can be written Smaxðx1 � y1Þ. The symmetrization of

a binary operation is a unary operation. If every variable

instantiation in an expression is contained within at least one

symmetrization, then we will say that the expression is

completely symmetrized. For example, S�ðx2Þ is completely
symmetrized, while maxðx1; S�ðx2ÞÞ is not.

Every variable instantiation in a verifiably symmetric algebraic
expression is included in a minimal fixed expression by definition
and each such minimal expression can be written with a
symmetrization up to commutative equivalence. Therefore,

Proposition 1. Any verifiably symmetric expression is commutatively
equivalent to a completely symmetrized algebraic expression.

This simple proposition allows for a compact “grammar” of
verifiably symmetric algebraic expressions and a trivial way for
optimization algorithms to modify algebraic expressions while
staying within the verifiably symmetric class. The rest of this paper
will consider completely symmetrized algebraic expressions as the
expressions defining the �i.

The value of BRTSS can be computed by free software from
http://math.canterbury.ac.nz/matsen/simmons/.

3 ENUMERATION AND OPTIMIZATION

3.1 Enumeration

With this framework, it is possible to enumerate many algebraic
expressions and test them for desirable properties. This idea was
implemented as follows: First, define the “size” of an algebraic
expression to mean the total number of operations and operands in
the expression: For example, the expression 2þ xi has size 3. The
symmetrization of a commutative binary operation is unary and,
thus, adds only one to the size. Second, select a set of constants,
variables, unary operations, and binary operations for enumera-
tion. These can be subsets of the complete set allowed for BRTSS
recursions.

For each k up to a maximal size, two lists are constructed: one of
completely symmetrized algebraic expressions and another of
nonsymmetrized expressions. To construct the completely symme-
trized expressions of size k, all unary operations are applied to the
completely symmetrized expressions of size k� 1, then all
symmetrizations are applied to all nonsymmetrized expressions
of size k� 1, then all binary operations are applied to all pairs of
completely symmetrized expressions of total size k� 1. To
construct the nonsymmetrized expressions of size k, all unary
operations are applied to the nonsymmetrized expressions of size
k� 1, then all binary operations are applied to all pairs of
completely symmetrized and nonsymmetrized expressions of total
size k� 1, then all binary operations are applied to all pairs of
nonsymmetrized expressions of total size k� 1.

For k ¼ 1, the completely symmetrized algebraic expressions
are taken to be the chosen set of constants and the nonsymmetrized
algebraic expressions are instantiations of the variables. In the
present application, some limited forms of simplification were
implemented to eliminate double negation and similar obvious
redundancies.

The number of statistics constructible using direct enumeration
is large. We enumerated all statistics of length one, size less than or
equal to seven, constants taken from the set f0; 1; 2g, variables x and
y, and operations as in Section 1.2 except for subtraction and
division, which can be expressed using combinations of operations.
After removing those statistics which are constant on all trees on
eight leaves, 516,699 statistics remained. The number of analogous
BRTSS with length larger than one is considerably larger.

3.2 Genetic Algorithm

Genetic algorithms typically optimize over a very large discrete
space by maintaining a population of elements of that space and
allowing reproduction based on the value of the function to be
optimized [12]. Mutation and crossover are defined such that the
population changes over time. Here, the underlying space is taken
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to be the set of BRTSS with integral �i and algebraic expressions as
in Section 1.2 for the �i. We will assume for this section that the
BRTSS under consideration have length n.

Standard Wright-Fisher sampling [13] was applied for repro-
duction. When the objective was to maximize a positive number,
the raw fitness function was simply that number. When the
objective was to minimize a number between zero and one, such as
a p-value, the negative of the logarithm of the objective function
was used as the raw fitness.

Two types of mutation were defined: mutation of � and mutation
of �. A mutation of � simply chooses an i 2 f1; . . . ; ng uniformly and
then adds or subtracts one from �i. A mutation of � also chooses a �i
uniformly to mutate. A mutation of a �i can be either an insertion,
modification, or a deletion. An insertion can occur to the whole
expression or to any subexpression and involves replacing f by
either uðfÞ for some unary operation u or by replacing f with f ? t,
where t is a constant or a variable instantiation and ? is some binary
operation. A modification uniformly selects a random operation or
operand from the expression and modifies it in place. Binary
(respectively, unary) operations can be modified to be any other
binary (respectively, unary) operation. Constants increase or
decrease by one. Variables either change from an xi to yi (or vice
versa) or the index is increased by 1, wrapping back to 1 when
appropriate. Deletion can act on a binary operation or a unary
operation. A unary operation uðfÞ is replaced by f and a binary
operation f ? g is replaced by a uniform selection of f or g. The
distributions on the above choices can be chosen arbitrarily;
however, for the present applications, the distributions were all
taken to be uniform.

Some of these mutations can transform a completely symme-
trized algebraic expression to one which is not. In this case, first, all
of the locations for symmetrized operations which would symme-
trize a subexpression are found. Then, one is uniformly chosen
among these locations and a uniformly chosen symmetrized
operation is applied. If the resulting expression is still not
completely symmetrized, the process is repeated until it is.

Crossover was defined analogously to chromosome sorting in
diploid organisms. Given two BRTSS, one called “heads” and the
other “tails,” sample a Bernoulli random variable for each i and
choose the corresponding �i and �i for the first product of the
crossover. The other product is obtained by using the compliment.
For example, if the sample is HT for ðð�H;1; �H;2Þ; ð�H;1; �H;2ÞÞ
crossed with ðð�T;1; �T;2Þ; ð�T;1; �T;2ÞÞ, the resulting BRTSS are
ðð�H;1; �T;2Þ; ð�H;1; �T;2ÞÞ and ðð�T;1; �H;2Þ; ð�T;1; �H;2ÞÞ.

In order to avoid overly long BRTSS, it is possible to discount
the fitness of a BRTSS according to its size. Specifically, rather than
the raw fitness function F ðqÞ, one can use F ðqÞ �  SðqÞ, where SðqÞ
is the total size of the BRTSS and  is a scaling factor. It is also
possible to have  change after a number of generations of the
genetic algorithm.

3.3 Workflow

Here, we describe the strategy for producing high-performance
statistics using the above methodology. First, an objective function
must be chosen which is representative of the problem but which is
not too costly to compute. For instance, to find a statistic which can
differentiate between two distributions on trees, a compromise
must be found for sample size. Too small of a sample may just pick
up sampling differences, yet too large of a sample significantly
slows down computation.

Second, enumeration is used to find a good initial population
for the genetic algorithm. Early efforts demonstrated that the
genetic algorithm was excellent at finding local optima, but that it
had difficulty traversing the whole fitness landscape. A solution is
to start with a diverse population of statistics, which can be found
using the method of Section 2.1. Many statistics are enumerated

and then sorted by their performance; a selection of the best is then
used as an initial population.

Third, the genetic algorithm is run with a variety of parameters
and random seeds. The resulting statistics are then collected and
rated against one another and the best ones are found.

The algorithm has been implemented in an ocaml [14] program;
complete source code is available at http://math.canterbury.ac.nz/
matsen/.

3.4 Overfitting

The number of verifiably symmetric algebraic expressions—even
of moderate size and with a small selection of constants—is
enormous. The number of binary recursive tree shape statistics
constructible with these algebraic expressions is, of course,
significantly larger. For this reason, some caution is needed to
avoid “overfitting” the statistical problem at hand. For example,
the method described here can quite easily find a statistic which
seems to indicate a significant difference between two moderately
sized draws from the same distribution on trees.

This problem can be approached in the following ways: First, in
the applications, we have split the data into “training” and
“testing” data such that statistics are evolved on the training data
and then their significance is indicated on the testing data. If the
testing data is of reasonable size, it is unlikely that observed
statistical significance is due to sampling. Second, one can reduce
the overfitting problem by incorporating size into the fitness
function as described above. This tends to keep the statistics in a
more manageable range. Finally, statistics with only one recursion
are less likely to overfit than those with multiple recursions; for
this reason, we have restricted ourselves to the single-recursion
case in the below application.

4 APPLICATION

In this section, we apply the methods described in the previous
chapter to perform a reanalysis of the results from a recent paper
by Blum and François [15]. The main purpose of their paper was to
investigate an earlier suggestion by Aldous that an instance of his
“beta-splitting” model might approximate the distribution of
macroevolutionary phylogenetic trees reconstructed from se-
quence data [16]. Blum and François confirm his suggestion, “that
the [imbalance measures] generally agree with a very simple
probabilistic model: Aldous’ Branching.” These models are
explained below. The conclusion of the example application in
this paper will be that, although the sampled trees do fit the
“Aldous’ Branching” model reasonably well in terms of overall
balance, it is possible to find a tree shape statistic which
demonstrates a substantial deviation from the Aldous model.

The “Aldous’ Branching” model is an instance of a one-
parameter family of models invented by David Aldous called the
“beta-splitting” models. These models are simply probability
distributions on trees and are not intended to model any
evolutionary process. The idea of the beta-splitting model is to
recursively split the taxa into subclades using a distribution
derived from the beta distribution. More precisely, assuming that a
clade has n taxa, the probability of the split being between
subclades of size i and n� i is

qn;�ðiÞ ¼ Cðn;�Þ �ð� þ iþ 1Þ�ð� þ n� iþ 1Þ
�ðiþ 1Þ�ðn� iþ 1Þ ;

where Cðn;�Þ is a normalizing constant. The parameter � in
Aldous’s model thus determines the overall balance of the trees
such that larger values of � lead to increased balance. The so-called
“equal rates Markov” (ERM) model corresponds to � ¼ 0 and the
“proportional to different arrangements” (PDA) model results
when � is set to �1:5. The model when � is set to �1 is called the
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“Aldous’ branching” model by Blum and François, but we will
simply call it the � ¼ �1 model.

Blum and François took a sample of trees from the tree database
TreeBASE [17] and found a maximum-likelihood estimate of � for
each of these trees. Because not all of the trees are binary, they
resolved multifurcating nodes (also called polytomies) by splitting
them either via the ERM model (“ERM-solved” trees) or via the
PDA model (“PDA-solved” trees). They felt that the inclusion of
outgroups might skew the analysis and, thus, passed the trees
through an “automated outgroup removal procedure” which
simply removes leaves or cherries (subtrees with two leaves)
branching off of the root.

The general strategy taken in this section will be to compare the
same trees used by Blum and François to a sample from the � ¼ �1

(a.k.a. “Aldous’ branching”) distribution. Specifically, for each
ERM-solved TreeBASE tree in their set after the outgroup removal
procedure, we sample a tree of the same size from the � ¼ �1 model.
This provides a paired data set which is appropriate for paired
statistical tests such as the sign test. As described in Section 2.4, we
divide the data into training and testing subsets. In this case, the
trees were numbered starting from zero and the even numbered
trees taken for training and the odd numbered trees taken for
testing, resulting in 1,032 trees for the training set and 1,031 trees
for the testing set.

We first review the statistic used by Blum and François to
compare the TreeBASE trees and the corresponding model trees.
They define

sðT Þ ¼
X
i2I

logðNi � 1Þ;

where, as before, Ni is the number of leaves of the subtree
subtended by internal node i. We applied this statistic to the paired
data set, which led to a p-value of 0.362 with the sign test.
Therefore, through the eyes of the Blum and François’ s statistic,
the � ¼ �1 model indeed does a good job of producing trees
similar to those found in TreeBASE.

The goal for the rest of this section will be to find a statistic
which does indicate a significant statistical difference between the
� ¼ �1 trees and the TreeBASE trees. Accordingly, the objective
function applied to a chosen statistic was chosen to be the negative
of the logarithm of the p-value of the sign test for the statistic
applied to the aligned data. The recipe from Section 2.3 was
followed. In the enumeration phase, all statistics of length one and

size up to five, with constants and �i chosen from the set f0; 1; 2g,
were tested and the best used as an initial population. The genetic

algorithm was run with population sizes of 50 and 100, mutation

rate of 20 percent per generation, and 1,500 generations.
We will focus on one statistic returned from the algorithm,

which will be called  . The  statistic has � ¼ 8 and

�ðx; yÞ ¼ ðlogðxþ yÞÞ5. This statistic rejects the � ¼ �1 model with

a p-value of 6:78� 10�19 for the paired sign test on the testing data.

Therefore, this statistic clearly indicates an important difference

between the beta-splitting and the reconstructed trees.
Although the  statistic was developed in order to differ-

entiate between the TreeBASE trees and the � ¼ �1 trees, it does

a good job of differentiating between the sample of TreeBASE

trees and samples from the beta-splitting model for a range of �

values. As seen in Fig. 1, the  statistic rejects the beta-splitting

model for a variety of values of � with a very low p-value, while

the s statistic only rejects the beta-splitting model when � is rather

far away from �1.
We will now sketch some ideas of how the  statistic might

“work.” An interesting feature of this statistic is that it converges on
sequences of trees of increasing size satisfying certain conditions.

For example, its value on an infinite balanced tree is approximately

5:05� 105 and on an infinite “comb” (perfectly imbalanced) tree, its

value is approximately 3:32� 105. The reasons for this are clear

from Fig. 2. The statistic can be evaluated on a large balanced tree

by recursively iterating the function x 7! ðlogð2xÞÞ5; from the plot, it

is clear that this recursion will converge to a value slightly more

than 5� 105. For the comb tree, the recursion is x 7! ðlogðxþ 8ÞÞ5
and the convergence value can again be estimated from the plot.

However, as can be seen from Table 1, the convergence is not

immediate. Furthermore, for small trees, the statistic increases with

imbalance (compare the balanced tree of depth three to the comb of

depth seven, each of which have eight leaves), whereas, on large

trees, the statistic increases with balance. This implies that the

exchange of a comb subtree for a balanced subtree in a small tree

can increase the statistic, whereas the same exchange in a large tree

may decrease the statistic. This feature suggests that the TreeBASE

trees may deviate from the “Markov branching” property of the

beta-splitting models, which is that the distribution on subtrees of

a given size is independent of the rest of the tree.
At this point, it is important to emphasize that the  statistic

was invented for the single purpose of distinguishing the beta-

splitting trees from the sorts of trees one finds in TreeBASE. This

statistic was named for convenience only, not to introduce it into

the canon of tree shape statistics. Indeed, one intent of this paper is

to reduce the traditional emphasis on individual “general
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Fig. 1. A comparison of the  statistic considered in this paper and the s statistic of
Blum and François. The x axis is the value of � used to sample trees and the y axis
is the negative base 10 logarithm of the p-value of the sign test applied to the
sample from TreeBASE and samples of the beta-splitting model. Clearly, the s
statistic has low power to distinguish between the two samples for a range of �,
while the  statistic has high power within this range.

Fig. 2. The recursion from  .



purpose” tree shape statistics and to focus instead on creating
statistics for a specific application.

There will often be many such useful statistics. For example,
note that a number of statistics appeared on different runs of the
same objective function with similar performance. Because the
space of algebraic expressions is so large and the fitness landscape
is very “peaked,” runs of the genetic algorithm seldom converge
on the same BRTSS when started with a different random seed or
slightly different parameters.

The results of this section should not be construed as a rejection
of the results or methodology of Blum and François. They found a
value for � which does, in fact, generate the observed level of
overall balance for the TreeBASE trees. However, the above
statistic shows that, in this case, there is more to tree shape than
just overall balance. The difference between the two perspectives
indicates interesting future directions for research. For example, is
the observed difference due to reconstruction bias or is the
deviation indicated by the above statistic an actual feature of
macroevolutionary processes? If the latter, how can we modify the
present models to accommodate the difference?

5 CONCLUSIONS

In conclusion, we have developed a framework which allows
enumeration of and optimization over a class of tree shape
statistics. This class includes many of the tree shape statistics
found in the literature. A genetic algorithm can be applied in this
framework to find customized tree shape statistics for a certain
application. The methodology is applied in an example case,
finding a statistic which indicates a significant difference between
two distributions on trees which was not previously evident.

Along with this new tool comes a new problem, which is that
an automated system such as the genetic algorithm described
above can create very complex tree shape statistics whose values
can be hard to interpret. This issue is not problematic from an
abstract statistical viewpoint; however, it is comforting to have an
intuitive interpretation of the statistics. In the sample case above,
some intuition was developed about a relatively simple statistic,
but it may not be easy to find an interpretation for a complex one.
It would be helpful in this regard to be able to derive limiting
distributions for BRTSS applied to a distribution on trees. It is
possible to do this for certain statistics, such as the number of
cherries [7] or Ic and �N [9]. The methods used in the latter paper
are applicable to a subclass of the BRTSS; however, a substantial
amount of work must be done on a case-by-case basis.

We note that the problem of differentiating two distributions on
combinatorial objects has been approached in a different fashion
by the statistical physics community. In their case, many models
have been proposed for the growth of social and biological
networks and a goal is to confirm or reject a certain model given
some data. Analogous to the classical tree shape statistics,

individual means of comparing graphs, such as the diameter or
the number of subgraphs of a specific type, have been described
(see, e.g., [18]). A more recent approach is to count, in some
manner, the number of many different walks on the networks and
then feed that information into a Support Vector Machine [19], [20].
This approach is similar to that described in the present paper in
that machine learning is used to come up with tests which can
distinguish models from data; however, the actual technique is
quite different. Their network approach focuses on local structure,
while the BRTSS in this paper often provide global information.
Nevertheless, an application of the network approach might
provide some insights into the tree shape setting.

In the future, we hope to use the methodology presented in this
paper to expand the applications of tree shape theory in useful
directions. For example, moderately sophisticated models of
influenza evolution are currently being used to elucidate the
evolutionary processes which form the remarkable imbalance of
influenza phylogenetic trees [21], [22]. At this point, very little of
even the classical tree shape statistics is being applied to
quantitative description. Another potentially underdeveloped area
is the use of tree shape statistics to detect bias in modern tree
reconstruction methods on real data; a lone article from more than
10 years ago [23] forms the complete bibliography in this area.
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