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Abstract In this paper, we apply new geometric and combinatorial methods to the study
of phylogenetic mixtures. The focus of the geometric approach is to describe the geometry
of phylogenetic mixture distributions for the two state random cluster model, which is
a generalization of the two state symmetric (CFN) model. In particular, we show that
the set of mixture distributions forms a convex polytope and we calculate its dimension;
corollaries include a simple criterion for when a mixture of branch lengths on the star tree
can mimic the site pattern frequency vector of a resolved quartet tree. Furthermore, by
computing volumes of polytopes we can clarify how “common” non-identifiable mixtures
are under the CFN model. We also present a new combinatorial result which extends any
identifiability result for a specific pair of trees of size six to arbitrary pairs of trees. Next
we present a positive result showing identifiability of rates-across-sites models. Finally,
we answer a question raised in a previous paper concerning “mixed branch repulsion” on
trees larger than quartet trees under the CFN model.

Keywords Phylogenetics · Model identifiability · Mixture model · Polytope · Discrete
Fourier analysis

1. Introduction

Molecular phylogenetic inference methods reconstruct evolutionary history from se-
quence data. Many years of research have shown that if data evolves according to a single
process under certain assumptions then the underlying tree can be found given sequence
data of sufficient length. For an introduction to this literature, see Felsenstein (2004) or
Semple and Steel (2003).

However, it is known that molecular evolution varies according to position, even within
a single gene (Simon et al., 1996). Between genes even more heterogeneity is observed
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(Ochman et al., 2000), though it is not unusual for researchers to concatenate data from
different genes for inference (Rokas et al., 2003). This poses a different challenge for
theoretical phylogenetics: is it possible to reconstruct the tree from data generated by a
combination of different processes?

This question is formalized as follows. The raw data for most phylogenetic inference
techniques is site-pattern frequency vectors, i.e. normalized counts of how often certain
data patterns occur. If multiple data sets are combined, the corresponding site-pattern fre-
quency vectors are combined according to a weighted average. In statistical terminology,
this is called a “mixture model.” In the phylogenetic setting, there are various means of
generating a site-pattern frequency vector given a tree with edge parameters, for example,
the expected frequency vector under a mutation model.

Definition 1. Assume some way of generating site-pattern frequency data from trees and
edge parameters, i.e. a map ψ from pairs (Ti, ξi) to site pattern frequency vectors. We
define a phylogenetic mixture (on h classes) to be any vector of the form

h∑

i=1

αiψ(Ti, ξi), (1)

where for each i, αi > 0 and
∑

i αi = 1. When all of the Ti are the same, we call the
phylogenetic mixture a phylogenetic mixture on a tree.

The formal version of our question is now “given a phylogenetic mixture (1) can we
infer the trees Ti and the edge parameters ξi?”

The answer to this question is certainly “not always.” Steel et al. (1994) presented
the first “non-identifiable” examples, i.e. phylogenetic mixtures on a tree such that the
underlying tree cannot be inferred from the data. More recently, Štefankovič and Vigoda
(2007) were the first to explicitly construct such examples. Even more recently, Matsen
and Steel (2007) showed the stronger statement that a phylogenetic mixture on one tree
can “mimic” (i.e. give the same site-pattern frequency vector as) an unmixed process on
a tree of another topology.

This raises several questions, some of which are answered in this paper for the two
state models and some generalizations. First, now that we know these non-identifiable ex-
amples exist, is there some way of describing exactly which site-pattern frequency vectors
correspond to non-identifiable mixtures? Below we note that the set of mixture distribu-
tions on a tree of a given topology forms a convex polytope with an simple description
(Proposition 10); thus, the non-identifiable patterns (being a finite intersection of poly-
topes) form a convex polytope as well. Now, computing dimensions shows that a “ran-
dom” site-pattern frequency vector has a non-zero probability of being non-identifiable,
which raises the question of the relative volumes of a given tree polytope and the non-
identifiable polytopes. This question is answered by computer calculations for the quartet
case in Table 1. We also show that surprisingly well-resolved trees sit inside the phylo-
genetic mixture polytope for the star tree (Proposition 22). This same proposition implies
that the internal edge of a quartet tree must be long compared to the pendant edges if the
corresponding site-pattern frequency vector is to be identifiable.

The second main section focuses on identifiability results for mixtures of two trees un-
der various assumptions. These results partially “bookend” the non-identifiability results
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of Matsen and Steel (2007), Štefankovič and Vigoda (2007). The first emphasis for this
work is combinatorial, answering the question (Theorem 23) “if we know all of the splits
associated to the restriction of a pair of trees to taxon subsets of size k, is it possible to re-
construct the pair of trees?” This gives a theorem which extends any identifiability result
for a specific pair of trees of size six to arbitrary pairs of trees under a molecular clock
(Theorem 28). A different approach shows identifiability of rates-across-sites models for
pairs of trees (Theorem 30). Finally, we show that if a two class phylogenetic mixture
on a single tree mimics the expected site-pattern frequency vector of a tree on another
topology then the two topologies can differ by at most one nearest neighbor interchange.

2. Geometry of unbounded mixtures on one or more topologies

In this section, we show that the space of phylogenetic mixtures under the random cluster
model is the convex hull of a finite set of points, i.e. a convex polytope. The description of
the vertices of the polytope has some interesting consequences discussed in Section 2.2.
We then compute dimensions, which is motivated in part by the following theorem of
Carathéodory:

Theorem 2. If X is a d-dimensional linear space over the real numbers, and A is a subset
of X, then every point of the convex hull of A can be expressed as a convex combination
of not more than d + 1 points of A.

A proof can be found as statement 2.3.5 of Grünbaum (2003). Therefore, if we know
that the dimension of a certain set of phylogenetic mixture distributions is d , then any
mixture distribution in that set can be expressed as a phylogenetic mixture with no more
than d + 1 classes.

We also show that the dimension of those site-pattern frequency vectors which can be
written as phylogenetic mixtures on the star tree is equal to the corresponding dimension
for all topologies together. This forms an interesting contrast to the genericity results in
Allman and Rhodes (2006).

Convex polytopes are typically specified in one of two ways: by a V-description, as the
convex hull of a finite set of points, or by an H-description, as the bounded intersection of
finitely many half-spaces. Classical algorithms exist to go between the two descriptions;
these are implemented in the software polymake (Gawrilow and Joswig, 2005). We will
make use of both descriptions; for example, the intersection of polytopes can be easily
computed by taking the union of the two sets of inequalities describing the half-spaces of
the H -descriptions. More introductory material about polytopes can be found in the texts
of Grünbaum (2003) and Ziegler (1994).

From the phylogenetic perspective, we are interested in the set of site pattern fre-
quency vectors which correspond to non-identifiable mixtures. In particular, one might
ask the question: which site-pattern frequency vectors can be expressed as a phyloge-
netic mixture on any one of a collection of tree topologies? At least in the case of the
random cluster model, the answer is the intersection of the corresponding phylogenetic
mixture polytopes. Using polymake and Proposition 10 this becomes an easy exercise
for small trees: simply take the union of the H -description inequalities for the polytope
associated with each topology. Although the complexity of going from a V -description to



1118 Matsen et al.

an H -description is still open (Kaibel and Pfetsch, 2003), in practice no fast algorithm is
known, and so our approach may not feasible for large trees. We analyze the polytopes
associated with quartet trees in Section 2.2.

2.1. The random cluster model

In this section, we define the random cluster model, which generalizes the two state sym-
metric (CFN) and Jukes–Cantor DNA models (Felsenstein, 2004) in two ways: first, it
allows an arbitrary number of states, and second, it allows non-uniform base frequencies.
We will use the common convention that [k] := {1, . . . , k}. Assume k states, and fix a
distribution π = (πi : i ∈ [k]) as the stationary distribution on those states. It is always
assumed that πi > 0 for all i ∈ [k]. We will label the n states x1, . . . , xn.

First, we define a distribution on site patterns based on partitions. Informally, we sam-
ple once from π for each set of the partition, and assign that value to each element of that
set.

Definition 3. Let S = {S1, . . . , Sr} be a partition of [n]. We denote by DS the probabil-
ity distribution of the random vector (x1, . . . , xn) obtained by sampling yi independently
from π for each i ∈ [r] and assigning state yi to all of the xj such that j ∈ Si .

We make the following simple observations:

Lemma 4. Assume (x1, . . . , xn) is distributed according to DS . Then

• The marginal distribution of each xi is given by π .
• For all S ∈ S and i, j ∈ S it holds that xi = xj .
• The collections of random variables {xS : S ∈ S} are mutually independent, where

xS = {xi : i ∈ S}.

Definition 5. For any tree T = (V ,E) and function c : E → [0,1], define the random
cluster model as follows: For each edge e declare the edge “closed” with probability c(e)

and declare it “open” otherwise. Let S1, . . . , Sr denote the maximal open-edge connected
components of V . Now define the partition S = S1, . . . , Sr and sample a site pattern from
the distribution DS as in Definition 3. We use DT,c denote the induced distribution of
state assignments to the leaves.

We will also consider the case k = ∞ in which different clusters will always be as-
signed different states. Note that this particular case is what was referred to as the “random
cluster model” in Mossel and Steel (2004).

The CFN and Jukes–Cantor DNA models are random cluster models with π the uni-
form distribution on 2 and 4 states, respectively. In general, for any k-state model with
uniform stationary frequencies, the corresponding probability in the random cluster model
that an edge is closed is k/(k − 1) times the probability of mutation along that edge (see,
e.g. Semple and Steel, 2003, p. 197).

Definition 6. A binary edge vector is a mapping g : E → {0,1} taking the value 1 if the
edge is closed and 0 if the edge is open.
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Definition 7. Given an edge probability vector c : E → [0,1] let Jc be the associated
distribution on binary edge vectors, i.e.

Jc(g) =
∏

e∈E

c(e)g(e)
(
1 − c(e)

)1−g(e)
.

The following lemma can be checked by substituting in the previous definition.

Lemma 8. If c1 and c2 differ on at most one edge e and if c = αc1 + (1 − α)c2, then

Jc(g) = αJc1(g) + (1 − α)Jc2(g).

Let x : [n] → [k] be an assignment of states to taxa, i.e. a site pattern. We can write
out the probability of seeing this site pattern under the random cluster model as

DT,c(x) =
∑

g

P (x|g)Jc(g), (2)

where P (x|g) is the probability of seeing x assuming a binary edge vector g. Using this,
we have

Proposition 9. For any tree T and any c, the distribution DT,c is a convex combination
of distributions DT,ci

where ci obtains only the values 0 or 1.

Proof: Using Lemma 8 and (2) we can proceed stepwise: first, we obtain (by averaging
DT,ci

) the set of vectors with the correct first coordinate of c and arbitrary other coordi-
nates chosen from {0,1}. Averaging these vectors one can obtain a set of vectors with the
first two coordinates correct, and so on. �

By grouping all of the open-edge-connected subsets into a partition or by opening and
closing edges according to a partition, one has the following lemma.

Proposition 10. Let T be a phylogenetic tree and let c be edge probabilities, all of whose
values are in {0,1}. Then DT,c = DS for some partition S of [n]. On the other hand,
for every partition S of [n], there exists a phylogenetic tree T and edge probabilities
c ∈ {0,1}E such that DT,c = DS .

In fact, the distributions DS determine the convex geometry of phylogenetic mixtures.

Theorem 11. The set of phylogenetic mixtures on trees over n leaves is a convex polytope
with vertices

{
DS : S a partition of [n]}.

Proof: The set of phylogenetic mixtures is convex by definition. By Propositions 9 and
10, it follows that every phylogenetic mixture can be written as a convex sum of the
elements DS . It thus remains to show that we cannot write DS as a convex combination
of DS1 , . . . ,DSk

if S /∈ {S1, . . . ,Sk}.
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Assume by contradiction that

DS =
∑

i

αiDSi
, (3)

where αi > 0 for all i and
∑

i αi = 1.

Claim 12. S is a refinement of Si for all i.

Proof: Suppose S does not refine S1. Thus, there exist i �= j such that i and j belong to
the same set in S but do not belong to the same set in S1. But this implies by definition
that for DS we have that xi = xj with probability one while for DS1 the variables xi and
xj are independent. This is a contradiction. �

We use D[f ] to denote the expectation of f under the distribution D. The following
claim concludes the proof of the theorem.

Claim 13. DS cannot be written as a convex combination of the DSi
.

Proof: By the previous claim, we may assume (3) where S is now a refinement of each
of the Si . Let

f (x1, . . . , xn) =
∑

i,j

1(xi = xj ).

Note that for a general partition S ′ it holds that

DS′ [f ] = |S ′|22 + (
n2 − |S ′|22

)|π |22,

where
∣∣S ′∣∣2

2
= ∑

S∈S′ |S|2 and |π |22 = ∑
x∈[k] π

2
x . In particular, it follows that since S is a

refinement of Si and S �= Si for all i, we have DSi
[f ] > DS[f ] for all i. Plugging this

into (3), we obtain a contradiction. The proof of the claim follows, thereby completing
the proof of Theorem 11. �

Now we calculate dimensions. The dimension of a convex polytope is defined to be the
dimension of its affine hull. We do not give a general dimension formula here—instead
we will just discuss the two state and infinite state models. We let Dn(1/2,1/2) denote
the space of all distributions that can be written as a convex combination of phylogenetic
trees on n leaves under the CFN model, and let D�

n(1/2,1/2) denote those which can be
written using sets of edge lengths on the star tree with n leaves.

Proposition 14.

dim
(
D�

n(1/2,1/2)
) = dim

(
Dn(1/2,1/2)

) = 2n−1 − 1.

Proof: We will work with the two-state Fourier transform F as follows. Because in
this case the stationary distribution is uniform, we can work with “collapsed” site-pattern
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frequency vectors; we index these by subsets B ⊆ [n − 1] (see, e.g. Semple and Steel,
2003). Now, rather than having the two states be 0 and 1, take them to be −1 and 1.
Thus, the B-coordinate of a site-pattern frequency vector is the probability of having B

be exactly the set of indices i such that xi = −1. Define for any A ⊆ [n − 1] and D any
distribution on (collapsed) site-pattern frequencies

FA(D) = D

[∏

i∈A

xi

]
.

To see the connection with the Fourier transform defined by a Hadamard matrix, pick
some B ⊆ [n − 1] and take D′ to be the distribution that assigns −1 exactly to the xi with
i ∈ B (with probability one). Then

FA(D′) = (−1)|A∩B| .

This connection demonstrates that F is invertible. Now, since the Fourier transform is
linear and invertible, and we can compute the dimension of the D’s by computing the
dimension of their image under the Fourier transform.

By definition we have

F∅[DT,c] = 1, (4)

and it is known that

FA[DT,c] = 0 for all A of odd size (5)

for all T and c. This last fact can be seen as follows. By Proposition 9, we can assume that
DT,c is given by independent assignment of states (according to π ) to clusters S1, . . . , Sr .
Because the cardinality of A is odd, at least one of the A ∩ Sj must have odd size, and

D

[ ∏

i∈A∩Sj

xi

]
= −1 · 1

2
+ 1 · 1

2
= 0.

Equation (5) now follows because the expectation of a product of independent random
variables is the product of the expectations.

It thus follows that equalities (4) and (5) hold for all distributions in D. This implies
that

dim
(
Dn(1/2,1/2)

) ≤ 2n−1 − 1.

We show next that

2n−1 − 1 ≤ dim
(
D�

n(1/2,1/2)
) ≤ dim

(
Dn(1/2,1/2)

)
, (6)

which will imply the proposition. The second inequality follows by containment.
Now we show the first inequality. Given a set S, consider the partition ρ(S) that has

the sets S and a singleton set corresponding to each element of [n] \ S. This partition can
be achieved on the star tree by declaring all of the edges in S to be closed with probability
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one and all of the other edges to be open with probability one. By the same argument as
for (5),

FA[Dρ(S)] = 1 iff A ⊆ S and A is even.

Thus FA[Dρ(∅)] is zero for all A �= ∅. It follows (using the fact that F∅[DT,c] = 1 for
any T , c) that in this case affine dimension coincides with linear dimension. Therefore,
to show the first inequality of (6), it suffices to find for every set S of even order a linear
combination of elements of D�

n(1/2,1/2) whose Fourier coefficient at S is 1 and is 0 at
all other sets. An inductive argument shows that in order to achieve this task, it suffices to
show that for every even set S there exists an element of D whose Fourier coefficient at
every even subset of S is 1 and is zero on all other sets. This is exactly Dρ(S) as described
above. The proof follows. �

We now analyze the random cluster for k = 2 when the distribution π is not uniform.
Define D�

n(r,1 − r) and Dn(r,1 − r) for the case of non-uniform π = (r,1 − r) analogous
to the symmetric (CFN) case for any 0 < r < 1.

Proposition 15. Let 0 < r < 1 and r �= 1/2. Then

dim
(
D�

n(r,1 − r)
) = dim

(
Dn(r,1 − r)

) = 2n − n − 1.

Proof: Here we need a variant of the above-described Fourier transform—now we take
the state space to be {r − 1, r}, with π giving the first state with probability r and the
second state with probability 1 − r . Again F will denote the Fourier transform so that

FA(D) = D

[∏

i∈A

xi

]
.

However, there is one subtle difference, which is that because the stationary distributions
are not uniform, we cannot collapse the site-pattern frequency vectors. Thus, the above A

is a subset of [n], and the coordinates of D are now indexed by subsets of [n]. The matrix
representation of this transform in the n = 1 case in the basis {∅, {1}} is thus

X =
(

1 1
r r − 1

)
.

For n > 1, the matrix representation is the n-fold Kronecker product of X; it follows that
this transform is invertible for all 0 < r < 1. As before, we calculate the dimension of the
Fourier transform of the D. By definition

F∅[DT,c] = 1,

and if A is a singleton then

FA

[
DT,c

] = 0,
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for all T and c by a similar argument to before. It thus follows that the equalities above
hold for all distributions in the D. This implies that

dim
(
Dn(r,1 − r)

) ≤ 2n − n − 1.

As before, given a set S, consider the partition ρ(S) that has the sets S and a singleton
set corresponding to each element of [n] \ S. Then

FS[Dρ(S)] = r (r − 1)|S| + (1 − r) r |S| = r (r − 1)
(
(r − 1)|S|−1 + r |S|−1

) �= 0,

since 0 < r < 1, r �= 1/2 and |S| > 1. On the other hand, if A is not a subset of S then

FA[Dρ(S)] = 0

by an argument as in the previous proof.
As before, the affine dimension coincides with the linear dimension. To prove the

corresponding lower bound it suffices to find for every set S of size at least two a linear
combination of elements of D�

n(r,1 − r) whose Fourier coefficient at S is one and is zero
at all other sets. An inductive argument using Dρ(S) again concludes the proof. �

We have just seen how for the CFN model the affine dimension of the space of phy-
logenetic mixtures (which has exponential order in n) is much smaller than the number
of extremal points (which is the number of partitions of n). In contrast, for k = ∞, the
dimension equals the number of extremal points. This follows from the following propo-
sition.

Proposition 16. The distributions DS where S runs over all partitions of [n] are linearly
independent.

Proof: Recall that in the k = ∞ model, each partition is assigned a different state. Thus,
there is nothing to prove as the probability space we are working in is the space of parti-
tions of [n]. �

2.2. The phylogenetic mixture polytope for the CFN model

This section specializes to the case of phylogenetic mixtures under the CFN model. As
mentioned previously, the CFN model is equivalent to the random cluster model with
two states and a uniform stationary distribution. Rather than probabilities of edges being
open and closed, however, it is described in terms of “branch lengths.” For a given branch
length γ, we will call θ = exp(−2γ ) the “fidelity” of an edge, which ranges between zero
(infinite length edge) and one (zero length edge) for non-negative branch lengths. The
closed-edge probability c for that edge is then 1 − θ which is twice the probability of a
state change along that edge.

Corollary 17. The set of phylogenetic mixtures under the CFN model on a given tree is
a convex set whose extremal points are given (perhaps with repetition) by branch length
assignments to that topology taken from the set {0,∞}.
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Proof: A branch length of zero corresponds to an edge being open in the random cluster
model with probability one, and a branch length of infinity corresponds to an edge being
closed with probability one. The corollary now follows from Proposition 9. �

Before analyzing various associated polytopes, we fix some notation and remind the
reader of some facts. Denote site patterns on n taxa using subsets A ⊆ [n − 1] in the
“collapsed” notation as before. Note that one could equivalently use even sized subsets
of [n] via the f (A) below as in Matsen and Steel (2007). We will use pA to denote
the probability of a collapsed site pattern A and qA to denote the Ath component of the
Fourier transform as in Matsen and Steel (2007), Semple and Steel (2003). We will denote
the corresponding vectors by p and q . The Hadamard matrices will be denoted H ; H is
symmetric and HH = 2n−1I when H is n by n. We will denote inner product of v and
w by 〈v,w〉 and will often use the fact that 〈Hv,w〉 = 〈v,Hw〉. We will take eA to be
the vector with A’th component one and other components zero. We will also use the
following lemma, from the proof of Theorem 8.6.3 of Semple and Steel (2003).

Lemma 18. For any subset A ⊆ {1, . . . , n − 1} of even order, let

f (A) =
{

A if |A| is even,
A ∪ {n} otherwise.

Then

qA =
∏

e∈P(T ,f (A))

θ(e), (7)

where P(T ,f (A)) is the unique set of edges which lie in the set of edge-disjoint paths
connecting the taxa in f (A) to each other.

We will abuse notation by taking Co(T1, . . . , Tn) to denote the convex hull of phyloge-
netic mixtures on trees T1, . . . , Tn of the same number of leaves.

There are four tree topologies on four taxa: the star tree T� and the three resolved trees
on four taxa T1, T2, and T3. Thus, up to isomorphism, there are six convex polytopes of
interest in this case, with inclusions as indicated:

Co(T�) ⊆ Co(T1) ∩ Co(T2) ∩ Co(T3) (8)

⊆ Co(T1) ∩ Co(T2) (9)

⊆ Co(T1) (10)

⊆ Co(T1, T2) (11)

⊆ Co(T1, T2, T3). (12)

It will be shown below that the inclusion in (8) is an equality.
From a phylogenetic perspective, polytope (8) represents those site-pattern frequency

vectors which can be realized as a mixture on any of the four topologies. Polytope (9)
contains the distributions from mixtures on two of the resolved topologies. Polytopes (10),
(11), and (12) correspond to mixtures on one, two, or three resolved topologies.
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Polytopes (8) and (9) are of special interest, as they represent mixtures which are non-
identifiable for phylogenetic reconstruction. In Observations 20 and 21, we are able to pre-
cisely delineate the set of non-identifiable mixtures; these generalize the non-identifiable
mixture examples of Matsen and Steel (2007), Štefankovič and Vigoda (2007). The draw-
back is that the mixtures found here may use as many as eight sets of branch lengths
(recall Theorem 2) rather than just two, and that we may mix trees with extreme branch
lengths.

There is one more polytope which we will investigate, which is that cut out by in-
equalities known to be satisfied for phylogenetic mixtures. We will call this polytope L.
Specifically, L is the polytope cut out by 0 ≤ qA ≤ 1 for any A, and the Fourier trans-
form of the inequalities 0 ≤ pA ≤ p∅ for any A and the equality

∑
A pA = 1. Note that

the equality is equivalent to q∅ = 1. The inequality pA ≥ 0 is equivalent to 〈eA,p〉 ≥ 0
(where eA is the unit vector defined just prior to Lemma 18), and this is equivalent to

〈HeA,q〉 ≥ 0. (13)

The following observation notes further redundancies.

Observation 19. 〈HeA,q〉 ≥ 0 and qA ≥ 0 for every split A implies q∅ ≥ qA for every
split A. These same hypotheses also imply that the corresponding probability distribution
on splits is “conservative,” i.e. that p∅ ≥ pA for any A.

Proof: Assume there are n taxa. For the first assertion, let J be the n by n matrix with all
entries one. Then J − H is a matrix with non-negative entries. Therefore 〈HeA,q〉 ≥ 0
for every split A implies that 〈H(J − H)eA, q〉 ≥ 0 for every split A. But HJeA = H1 =
2n−1e∅ and HH = 2n−1I , giving the first assertion. For the second assertion, note that
He∅ − HeA is a vector with non-negative entries, since He∅ has all entries equal to +1
while HeA has half its entries equal to +1 and half equal to −1. Thus 〈He∅ − HeA,q〉
is non-negative given the assumptions. Thus, 〈e∅ − eA,p〉 ≥ 0, which is equivalent to the
second assertion. �

Because of these observations, we note that L is the polytope in Fourier transform
space cut out by qA ≥ 0 and (13) for each A, as well as q∅ = 1.

The following is a simple use of polymake to go from a V -representation to an
H -representation.

Observation 20. Co(T�) is defined by q∅ = 1, q123 ≥ 0 and the inequalities (13) and
qA ≥ q123 for each A.

Another polymake calculation demonstrates

Observation 21. The inclusion in (8) is an equality. In phylogenetic terms, the site-
pattern frequency vectors obtainable as a phylogenetic mixture on a tree for each of the
three resolved quartet topologies are exactly those obtainable as a phylogenetic mixture
on the four taxon star tree.

We can now see what trees sit inside the star tree polytope Co(T�).
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Table 1 Relative volumes of the polytopes described in the text. The absolute volume is that computed in
Fourier transform (i.e. q-) space

Polytope Relative volume (approx.) Absolute volume

Co(T�) 0.143 5/1008
Co(T1) ∩ Co(T2) 0.173 13/2160
Co(T1) 0.303 53/5040
Co(T1, T2) 0.566 11/560
Co(T1, T2, T3) 0.909 53/1680
L 1 5/144

Proposition 22. The resolved quartet trees whose site-pattern frequency vectors are ob-
tainable as a phylogenetic mixtures on the four taxon star tree are exactly those such that
the internal branch length is shorter than the sum of the branch lengths for any pair of
non-adjacent edges.

This proposition may come as a surprise for phylogenetics researchers: even though
a given data set may not have any evidence for a particular split, the data can appear
to be exactly that generated on a tree with an internal edge which is longer than any
of the pendant edges. Said another way, in order for the vector of expected site-pattern
frequencies for a quartet tree to be identifiable, it is necessary that the internal edge must
be longer than the sum of the branch lengths for a single pair of non-adjacent pendant
edges.

Proof: Let q denote the Fourier transform of the site-pattern frequency vector for the
tree in question, which we assume without loss of generality to have topology 12|34. This
q can be expressed as a phylogenetic mixture on the star tree exactly when it satisfies
the conditions in Observation 20. Because q is the Fourier transform of a site-pattern
frequency vector generated on a tree, by the above q∅ = 1, q123 ≥ 0, and the inequality (13)
is thus satisfied for any A. Now for each A ⊆ {1,2,3} we investigate the consequences of
the inequality qA ≥ q123. For A = {1}, the inequality becomes by (7)

θ1θ5θ4 ≥ θ1θ2θ3θ4 ⇔ θ5 ≥ θ2θ3.

Repeating the process for A = {2}, {1,3}, {2,3} and simplifying gives

θ5 ≥ max{θ1θ3, θ1θ4, θ2θ3, θ2θ4}.
The cases A = {1,2}, {3} give 1 ≥ θ3θ4 and 1 ≥ θ1θ2, which are trivially satisfied, as is the
case of A = {1,2,3}. Taking logarithms and dividing by −2 gives

γ5 ≤ min{γ1 + γ3, γ1 + γ4, γ2 + γ3, γ2 + γ4}. �

In the previous section, we showed that the dimension of those site-pattern frequency
vectors which can be realized as a phylogenetic mixture on the star tree is equal to the
dimension of those pattern probabilities which can be realized as an arbitrary phylogenetic
mixture. This means that given a sample from any nowhere-zero probability distribution
on arbitrary phylogenetic mixtures there is a non-zero probability of having the sample be
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realizable from the set of mixture distributions on the star tree. However, it does not give
any quantitative information. Quantitative answers for this and related questions for the
uniform distribution on site-pattern frequencies can be calculated by using polymake to
calculate volumes. Results are reported in Table 1.

For example, assume we uniformly choose a random probability distribution on pat-
terns obtained by a phylogenetic mixture on a given tree. Then there is a probability of
approximately 0.57 (≈ 0.173/0.302) that it is non-identifiable, i.e. that it can be written
as a phylogenetic mixture on another tree. More work on the relevant geometry is needed
to determine if such mixtures pose problems in the parameter regimes usually found in
phylogenetics.

3. Mixtures of two trees

In this section, we specialize to the case of phylogenetic mixtures on two trees, but we
generalize the set of mutation models considered.

3.1. Combinatorics

In this section, we establish a new combinatorial property that allows pairs of binary
phylogenetic trees to be reconstructed from their induced subtrees of size at most six
(Theorem 23). The statistical significance of this result is described in Corollary 25 and
the next section. We begin with some definitions.

Let B(X) denote the collection of binary phylogenetic X-trees (up to isomorphism)
and let B(X,k) denote the subsets of B(X) of size at most k. For T ∈ B(X) and Y ⊆ X,
let T |Y denote the induced binary phylogenetic Y -tree obtained from T by restricting
the leaf set to Y . For P = {T1, . . . , Tj } ∈ B(X,k) let P|Y := {T1|Y , . . . , Tj |Y } ∈ B(Y, k).
We will often stray from standard set theoretical notation when writing restrictions, for
example, T |{a,b,c,d} will be written T |abcd .

We say that a collection M of subsets of X disentangles B(X,k) if one can recon-
struct any P from the corresponding collection {P|Y : Y ∈ M}. This is equivalent to the
condition that for any pair P,P ′ ∈ B(X,k) we have

P = P ′ ⇔ P|Y = P ′|Y for all Y ∈ M.

If in addition, there is a polynomial time (in |X|) algorithm that reconstructs P from the
set {P|Y : Y ∈ M} we say that M efficiently disentangles B(X,k).

For example, it is well known that when k = 1 the collection M of subsets of X of
size four efficiently disentangles B(X,1)(= B(X)); indeed we may further restrict M to
just those subsets of size four that contain a particular element, say x, of X (see, e.g.
Theorem 6.8.8 of Semple and Steel, 2003). However, the subsets of X of size four do
not suffice to disentangle B(X,2); moreover, neither do the subsets of X of size at most
five. To establish this last claim, let X = {1,2, . . . ,6}, and consider two pairs of trees
shown in Fig. 1. Then {T1|Y , T2|Y } = {T ′

1|Y , T ′
2|Y } for all subsets Y of size at most five,

yet {T1, T2} �= {T ′
1, T

′
2}. However, allowing subsets of X of size at most six allows for the

following positive result.
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Fig. 1 Two pairs of trees which have the same combined set of splits.

Theorem 23. B(X,2) can be efficiently disentangled by the subsets of X of size at most
six.

To establish this result, we require the following lemma.

Lemma 24. Let T be a binary phylogenetic tree on a set Y of seven leaves, and suppose
that S = {a, b, c} is a subset of Y of size three. Let x, y be any two distinct elements of
Y − S. Then the quartet tree T |S∪{x} is determined by the collection of quartet trees T |q
as q ranges across the following four values:

(i) {a, b, x, y}, {a, c, x, y}, {b, c, x, y}, and
(ii) {a, b, c, y}.

Proof: Consider T |abcy . Without loss of generality, we may suppose that T |abcy = ab|cy.
If T |abxy = ab|xy then T |S∪{x} = ab|cx. On the other hand, if T |abxy = ax|by (or ay|bx)
then T |S∪{x} = ax|bc (or ac|bx, respectively). �

Proof of Theorem 23: Consider the collection Q of quartets of X that contain a given
element x ∈ X. The quartets in Q are of two types: let Q1 denote the quartets q in Q for
which T1|q = T2|q (i.e. P|q consists of just one tree) and let Q2 = Q − Q1. Set Q1 :=
{T1|q (= T2|q) : q ∈ Q1} and set

Q2 := {T1|q : q ∈ Q2} ∪ {T2|q : q ∈ Q2}.
From Q2, we construct a graph G(Q2) that has vertex set Q2 and that has an edge between
two quartet trees, say ij |kl and i ′j ′|k′l′, precisely if one of the trees in P displays both
of these quartet trees. Note that G(Q2) is the disjoint union of two cliques. Moreover, for
any two quartets q, q ′ ∈ Q2, each of the two trees in Q2 that correspond to q is adjacent
(in G(Q2)) to precisely one of the two trees in Q2 that correspond to q ′, and the resulting
two edges form a matching for these four vertices.

Now, provided q ∪q ′ has cardinality at most six, we can determine this matching since
we can, by hypothesis, construct P|q∪q ′ which must consist of two trees, and this pair of
trees tells us how to match the two resolutions provided by P for q (viz. {T1|q , T2|q}) with
the two resolutions of q ′ (viz. {T1|q ′ , T2|q ′ }). In particular we can determine the two edges
of G(Q2) that connect these four vertices of G(Q2).
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We claim that we can also determine (in polynomial time using just P|Y for choices of
Y of size at most six) the matching between these four vertices of G(Q2) in the remaining
case where q ∪ q ′ has cardinality seven.

Accepting for moment this claim, this allows us to reconstruct all the edges of G(Q2)

and, in particular, the two disjoint cliques of G(Q2), which bipartition Q2. Taking
the union of each clique with Q1 provides the pair of subsets {{T1|q : q ∈ Q}, {T2|q :
q ∈ Q}} from which {T1, T2} can be recovered. Furthermore all of this can be achieved in
polynomial time.

Thus it remains to establish the claim. Take two quartets q = {a, b, c, x} and q ′ =
{a′, b′, c′, x} from Q2 where we are assuming (since |q ∪ q ′| = 7) that

{a, b, c} ∩ {a′, b′, c′} = ∅.

We will now invoke Lemma 24 with S = {a, b, c} and Y = q ∪ q ′. Assume all of the
four quartets in Lemma 24 are in Q1; by the conclusion of the lemma the quartet tree
T |abcx is uniquely determined. Thus {a, b, c, x} ∈ Q1, which contradicts our assumption.
Therefore, at least one of the four quartets of type (i) or (ii) in Lemma 24 is in Q2.

Suppose there exists a quartet q∗ of type (i) in Lemma 24. Then q ∪ q∗ and q ′ ∪ q∗
both have cardinality at most six (for the latter, note that y in Lemma 24 must be one
of the elements a′, b′, c′ as y ∈ Y − q) and so we can determine the matching. Similarly,
since {a′, b′, c′, x} ∈ Q2 we can invoke Lemma 24 with S = {a′, b′, c′} and the pair x, y ′
where y ′ is an element of Y − S different from x. By similar logic, at least one of the
quartets satisfying Condition (i) or (ii) in Lemma 24 must also be in Q2 for this choice
of S. Once again, if we can find a quartet satisfying Condition (i) of Lemma 24, we can
determine the matching. A remaining possibility is that in both cases (i.e. for S = {a, b, c}
and S = {a′, b′, c′}) we can only find a quartet in each case that satisfies Condition (ii) of
Lemma 24. Call these two quartets q1 = {a, b, c, y} and q ′

1 = {a′, b′, c′, y ′}, respectively.
Then the three sets q ∪ q1, q ′ ∪ q ′

1 and q1 ∪ q ′
1 each have cardinality at most 6 (for the

last case, note that y ′ is one of a, b, c and y is an element of a′, b′, c′) and so we can
determine the matching for these three pairs. This allows construction of Ti |q∪q ′∪q1∪q ′

1
for

i = 1,2 from the corresponding quartet trees; the matching for the four vertices of G(Q2)

corresponding to q ∪ q ′ are then available by restriction. This completes the proof. �

An immediate consequence of Theorem 23 is the following.

Corollary 25. Suppose a model has the property that from an arbitrary mixture of
processes on two trees with the same leaf set of size six we can reconstruct the topology
of the two trees. Then the same property applies for phylogenetic mixtures on two trees
for any leaf set X (of any size greater than six), and by an algorithm that is polynomial
in |X|.

Remarks. Humphries has extended Theorem 23 to obtain analogous results for B(X,k)

for k > 2 (manuscript in preparation).

The algorithm for disentangling two trees outlined in the proof of Theorem 23 would
run in polynomial time, and a straightforward implementation of the method would have
a run time complexity of O(|X|7). However, it is quite possible that a more efficient
algorithm could be developed for this problem (and thereby for Corollary 25).
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3.2. Models

3.2.1. Clocklike mixtures
Suppose one has a phylogenetic mixture on two trees T1 and T2. In this section, we are
interested in whether one can reconstruct the pair {T1, T2} (or some information about
this pair) from sufficiently long sequences. In the case where for each tree there is a
stationary reversible Markov process (possibly also with rate variation across sites), and
the (positive, finite) branch lengths of T satisfy a molecular clock, some positive results
are possible.

Observation 26. The union of the splits in two trees T1 and T2 on the same taxon set can
be recovered from a phylogenetic mixture on the two trees under a molecular clock.

To see this, we simply consider the function p : X × X → [0,1] defined by setting
p(x, y) to be the probability that species x and y are assigned different states by the
mixture distribution (i.e. p(x, y) is the expected normalized Hamming distance between
the sequences). Then p = d1 + d2 where (by the molecular clock assumption) d1 and d2

are monotone transformations of tree metrics realized by T1 and T2, respectively. By split
decomposition theory (Bandelt and Dress, 1992), it follows that Σ(T1) ∪ Σ(T2) can be
recovered from p.

Note that Σ(T1) ∪ Σ(T2) does not determine the set {T1, T2} as the two pairs of trees
in Fig. 1 shows. However, this example is somewhat special:

Lemma 27. Suppose {T1, T2} and {T ′
1, T

′
2} are two pairs of binary phylogenetic trees on

the same set X of six leaves, and that

Σ(T1) ∪ Σ(T2) = Σ(T ′
1) ∪ Σ(T ′

2).

Then either {T1, T2} = {T ′
1, T

′
2} or the two pairs of trees are as shown in Fig. 1 (up to

symmetries).

Proof: The proof is simply a case-by-case check of split compatibility graphs. A split
compatibility graph is a graph where each split is represented by a vertex and an edge
connects two splits which are compatible. In this case, there are three nontrivial splits for
each tree topology; three splits being realizable on a tree is equivalent to those three splits
forming a clique in the split compatibility graph. Thus, the lemma is equivalent to saying
that up to symmetries there is only one subset of the vertices of the split compatibility
graph for six taxa which can be expressed as two three-cliques in two different ways.

There are two unlabeled topologies on binary trees of six leaves: the caterpillar (with
symmetry group of size eight) and the symmetric tree (with symmetry group of size 48).
First, we divide the problem into the case of two caterpillar topologies, then the case of
one caterpillar and one symmetric topology, finally two symmetric topologies. We label
the two types of splits as follows: we call a split with three taxa on either side (such as
123|456) “type x”, and a split with two taxa on one side and four on the other (such as
12|3456) “type y.”

Assume {T1, T2} �= {T ′
1, T

′
2}. In the case of two caterpillar topologies it can be seen by

eliminating cases that T1 and T2 cannot share a split of type y. Therefore the four type y
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splits of T1 and T2 must form a square of distinct vertices in the split compatibility graph.
Further elimination shows that the two trees in Fig. 1 are the only ones possible up to
symmetries.

The cases involving a symmetric tree are even easier, as the choice of two splits in
a symmetric tree determines the third. In the case of one caterpillar and one symmetric
topology, this implies that there can be at most four type y splits in T1 and T2. Checking
cases quickly eliminates all possibilities. Similar reasoning deals with the two symmetric
topology case, proving the lemma. �

Theorem 28. Suppose that for a reversible stationary model (possibly with rate variation
across sites) there is a method that is able to distinguish a phylogenetic mixture on trees T1

and T2 from a phylogenetic mixture on trees T ′
1 and T ′

2 (see Fig. 1) under branch lengths
that satisfy a molecular clock on each tree. Then from any phylogenetic mixture on two
binary trees for a leaf set X with both sets of branch lengths subject to a clock, one can
recover the two trees by an algorithm that runs in polynomial (O(|X|7)) time.

Proof: Combine Theorem 23, Observation 26, and Lemma 27. For the time efficiency es-
timate, the distance matrix can be estimated in O(|X|2) time, and the split decomposition
can be done in O(|X|4) time (Bandelt and Dress, 1992). �

3.2.2. Non-clocklike mixtures
In Matsen and Steel (2007), it was shown that under two-state symmetric (CFN) model,
one can have a mixture of two processes on one tree giving the same site-pattern frequency
vector as a single process on a different tree. This requires that the two sets of branch
lengths being mixed to be quite different and carefully adjusted. For example, we have:

Corollary 29. If a two class phylogenetic mixture on a tree R has the same site-pattern
frequency vector as a tree of a different topology S, then the two sets of branch lengths
cannot be clock-like (even for different rootings of the tree), nor can one branch length set
be a scalar multiple of the other.

Proof: There must be a taxon set abcd such that R|abcd = ab|cd and S|abcd = ac|bd .
Using the notation of Matsen and Steel (2007), (also explained in Section 3.3) clocklike
mixtures must have a pair of adjacent taxa (say a and b) such that ka = kb . For one set of
branch lengths to be a non-trivial scalar multiple of another, all of the pendant ki ’s must
be either less than or greater than one. Either of these cases contradicts Proposition 7 of
Matsen and Steel (2007). �

However, one could ask if a more complex phylogenetic mixture on a tree could mimic
an unmixed process on a different tree. Again, a molecular clock rules this out, and for
branch lengths that scale proportionately (as in a rates-across-sites distributions), we now
show that identifiability of the underlying tree still holds.

Theorem 30. Consider two binary phylogenetic trees T and T ′ on the same leaf set X of
size n generating data under the CFN model. For T , suppose we have a mixture of such
processes that can be described by a set of branch lengths and a distribution D of rates
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across sites which generates the same distribution on site patterns as that produced by an
(unmixed) set of branch lengths on T ′. Then T = T ′ and D is the degenerate distribution
that assigns all sites the same rate.

Proof: It suffices to prove the result for n = 4 and X = {1,2,3,4}, with T the tree 12|34,
and T ′ the tree 13|24. We denote the edge of T (resp. T ′) that is incident with leaf i by
ei (resp. e′

i ) and the interior edge of T (resp. T ′) by e0 (resp. e′
0). Let θ ′

i := 1 − 2p(e′
i )

and let λi denote the branch length of edge ei so that the probability of a change along ei

is 1
2 (1 − f (2λi)), where f (x) = ED[exp(μx)] is the moment generating function for the

distribution of the rate parameter μ in D.
Then we have (see, e.g. Lemma 8.6.4 and Theorem 8.8.1 of Semple and Steel, 2003):

f (−2λ1 − 2λ2 − 2λ0) = θ ′
1θ

′
2 and f (−2λ3 − 2λ4 − 2λ0) = θ ′

3θ
′
4,

and thus

f (−2λ1 − 2λ2 − 2λ0) · f (−2λ3 − 2λ4 − 2λ0) = θ ′
1θ

′
2θ

′
3θ

′
4.

Also,

θ ′
1θ

′
3θ

′
2θ

′
4 = f (−2λ1 − 2λ2 − 2λ3 − 2λ4).

Combining these last two equations and setting r := −2λ1 − 2λ2, s := −2λ3 − 2λ4;

f (r + s) = f (r − 2λ0)f (s − 2λ0) ≤ f (r)f (s), (14)

with equality precisely if λ0 = 0. However, exp(μx) is an increasing function of μ for
positive x. It follows that the random variables exp(μr) and exp(μs) are positively corre-
lated, i.e.

f (r + s) ≥ f (r)f (s)

with equality precisely if D is a degenerate distribution. Consequently, (14) is an equality;
thus D is a degenerate distribution and T ′ = T . �

Remark. Theorem 30 extends to provide an analogous result for the uniform distribution
random cluster model on any even number q = 2r of states, since such a model induces
the random cluster model on two states by partitioning the 2r states into two sets, each of
size r .

3.3. Mixed branch repulsion: larger trees

In this section, we find results analogous to those in Matsen and Steel (2007) for trees
larger than quartet trees. The main result is that two class phylogenetic mixtures on a tree
can only mimic a tree which is topologically one nearest neighbor interchange away from
the original tree.

Let �(T ) denote the set of leaves of a given tree T . We will write R � S to mean
that there exists a two class phylogenetic mixture on R which gives exactly the same site-
pattern frequency vector as some branch length set on a tree of topology S under the CFN
model. Of course, if R � S then �(R) = �(S).
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Theorem 31. Assume R and S are two topologically distinct trees on at least four leaves
such that R � S. Then R and S differ topologically by one nearest neighbor inter-
change (NNI). Furthermore, assume the NNI partitions �(R) into the sets X1, . . . ,X4.
Then R|Xi

= S|Xi
for any i (equality as rooted trees with branch lengths).

For this proof, we will draw notation and several ideas from the proof of the main
result of Matsen and Steel (2007). For a four taxon tree with taxon labels 1 through 4, we
will label the pendant edges with the corresponding numbers. We will write the quartet
tree with the ab|cd split as simply ab|cd . Given two sets of branch lengths on a given tree
we use ki to denote the ratio of the fidelities (see Section 2.2) of the two branch lengths
for the edge i. We will constantly use the simple fact that if the edge of an induced subtree
consists of a sequence of edges then the induced ki for that edge consists of the product of
the ki ’s for the sequence of the edges (this holds because the fidelities are multiplicative
along a path, and, therefore, their ratios are also).

Lemma 32. The quartet splits ab|cd , ac|bd and ad|bc are invariant under the action of
the Klein four group

K4 = {
1, (ab)(cd), (ac)(bd), (ad)(bc)

}
.

The following lemma can be checked by hand.

Lemma 33. Given numbers ka, kb, kc , there exists σ ∈ K4 such that

kσ(a) ≥ kσ(b) and kσ(a) ≥ kσ(c).

The following lemma is a rephrasing of Proposition 3 of (Matsen and Steel, 2007):

Lemma 34. If ab|cd � ab|cd then the following two statements must be satisfied:

• ka = kb or kc = kd

• ka = k−1
b or kc = k−1

d .

Lemma 35. If ab|cd � ac|bd then

• There is some element σ ∈ K4 such that kσ(a) > kσ(c) > kσ(d) > kσ(b)

• none of ka, . . . , kd are equal to one
• either exactly one or exactly three of ka, . . . , kd are greater than one
• ka �= k−1

b and kc �= k−1
d .

Proof: Each item in the list is from Proposition 7 of Matsen and Steel (2007) with the
exception of the last one. By Lemma 32, we can relabel such that ka > kc > kd > kb .
Let f (x) = x2−1

x
. Note that f (x−1) = −f (x), f (x) is positive for x ≥ 1 and strictly

increasing for x > 0. By Eq. (12) of Matsen and Steel (2007),

f (ka)f (kd) + f (kb)f (kc) > 0.
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Fig. 2 Definition of Wabcde .

Assume first that ka > kc > kd > 1 > kb . Then the above properties of f imply the fol-
lowing deductive chain:

f (ka)f (kc) + f (kb)f (kc) > 0,

f (ka) + f (kb) > 0,

f (ka) > f
(
k−1

b

)
,

implying ka �= k−1
b . The case where ka > 1 > kc > kd > kb is similar, as is the proof that

kc �= k−1
d . �

The proof of Theorem 31 rests on the following observation.

Lemma 36. If R � S then R|F � S|F for any F ⊂ �(R).

We will use this lemma by restricting taxon sets of the larger tree to sets of size five,
then analyzing for which ordered pairs (R,S) of five leaf subtrees it holds that R � S.
There are 225 ordered pairs of five leaf trees, however, in the following lemma, we show
that symmetry considerations reduce the relevant number of interest to four. For ease of
notation, we will write the five leaf subtree Wabcde as shown in Fig. 2.

Lemma 37. Given trees on five leaves R and S, the question of whether R � S or not is
equivalent to the question of if one of the following is true:

W12345 � W12345, (15)

W12345 � W13245, (16)

W12345 � W12354, (17)

W12345 � W13254. (18)

Proof: It can be assumed that R is W12345 by renumbering. Note that the symmetries of
a five leaf tree are generated by (12), (34), and (13), (24) on the tree W12345. A combi-
nation of these symmetries applied to R and renumbering means that these symmetries
can then be applied to the labels of S while still assuming that R is W12345. Using these
symmetries, S can be assumed to be either Wabcd4 or Wabcd5. There are six such trees;
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a further application of the symmetries shows that the cases of S = W13254 and S = W23154

are equivalent, as are S = W13245 and S = W14235. �

Lemma 38. Mixture (16) is impossible, i.e. W12345 �� W13245.

Proof: Assume the contrary, and that ki ’s are labeled as in Fig. 2. By (clear extensions of)
Lemmas 32 and 33, we can assume that k1 ≥ k2 and k1 ≥ k3 on these trees. By restricting
to the taxon set to 1234, and noting that by Lemma 36 12|34 � 13|24, we have k1 >

k3 > k4 > k2 and that k3 and k4 are either both greater than one or both less than one by
Lemma 35. By restricting to 1235, it is clear that k5 �= 1. Assume k5 < 1. Restricting the
taxon set to 2345 means that 25|34 � 24|35; by testing elements of K4 in Lemma 35 and
using the fact that k3 and k4 are either both greater than one or both less than one and
that k5 < 1, one must have k2k6 > k4 > k3 > k5. This contradicts the above statement that
k3 > k4. The case where k5 > 1 follows similarly by restricting to 1345. �

Lemma 39. Mixture (18) is impossible, i.e. W12345 �� W13254.

Proof: Assume the contrary. First restrict to the taxon set 1345. For this taxon set
15|34 � 13|45, showing by Lemma 35 that k3 �= k4, k3 �= k−1

4 , and k5 �= 1. Second, re-
strict to taxon set 2345. For this taxon set the induced mixture is 25|34 � 25|34, therefore
we can apply Lemma 34. Because k3 �= k4 and k3 �= k−1

4 , it must be true that k2k6 = k5

and k2k6 = k−1
5 . This contradicts the fact that k5 �= 1. �

Therefore, we are left with mixtures (15) and (17), implying the following corollary.

Corollary 40. Assume R � S for two five-leaf trees R and S. Then R and S share a
non-trivial split.

We now present two more lemmas which will be used in the proof of Theorem 31.
Given rooted trees R and S let R–S denote the unrooted tree obtained by joining the roots
of R and S together with an edge.

Lemma 41. Assume R1–R2 � S1–S2, �(R1) = �(S1), and all of the k’s for the edges in
R1 are one. Then R1 = S1 (equality with branch lengths).

Proof: Add a taxon e at the root of R1 (resp. S1) to obtain the unrooted tree RU (resp. SU ).
We will show that the between-leaf distance matrices for RU and SU are the same, which
implies that RU = SU and thus R1 = S1. Pick c and d distinct in �(R2). Pick an arbitrary
a and b ∈ �(R1) and restrict to the taxon set abcd . By Proposition 4 of Matsen and Steel
(2007), the pairwise distance between a and b in R1 and S1 (and thus in RU and SU ) will
be the same. To show that distances from taxa a ∈ �(R1) to the root taxon e are the same
in RU and SU , repeat the same process but for any a choose b such that the MRCA of a

and b in R1 is the root of R1. Another application of Proposition 4 of Matsen and Steel
(2007) in this case proves the proposition. �

As before, Σ(T ) denotes the set of splits of a tree T .
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Lemma 42. If R1–R2 � S1–S2, �(R1) = �(S1) and Σ(R2) �= Σ(S2) then R1 = S1 (equal-
ity with branch lengths).

Proof: For x, y ∈ �(R2), let Cy(x) be the set of edges in the path from x to the MRCA
of x and y. Define

ϕy(x) =
∏

e∈Cy(x)

ke.

This takes the place (for induced subtrees) of a single ke . The idea of the proof is to use
the previous lemma by showing that ke for any edge e in R1 is one. However, by induction
it is enough to show that ϕy(x) = ϕx(y) = 1 for any x, y ∈ �(R2).

Since Σ(R2) �= Σ(S2), but �(R2) = �(S2), there exists a subset {a, b, c} ⊂ �(R2) such
that R2 restricted to the taxon set abc is the tree (ab)c, while S2 restricted to abc is (ac)b.
Pick any x, y ∈ �(R1). First restrict to taxon set abcx, for which ab|cx � ac|bx. By
Lemma 35, ϕb(a) �= ϕa(b) and ϕb(a) �= [ϕa(b)]−1. Now restrict to the taxon set abxy, for
which ab|xy � ab|xy. By Lemma 34, ϕy(x) = ϕx(y) and ϕy(x) = [ϕx(y)]−1, implying
that each ϕ is one. The lemma now follows. �

The final lemma allows for the combination of splits; it is a special case of Lemma 2
of Meacham (1983). We present an argument here for completeness.

Lemma 43. Let T be a phylogenetic tree. If A ∪ {x}|B ∈ Σ(T |A∪B∪{x}) and A ∪ {y}|B ∈
Σ(T |A∪B∪{y}) then A ∪ {x, y}|B ∈ Σ(T |A∪B∪{x,y}).

Proof: First we note that if A|B ∈ Σ(T |A∪B) then one of A|B ∪ {x} or A ∪ {x}|B is
contained in Σ(T |A∪B∪{x}), otherwise the restriction of T |A∪B∪{x} to A∪B cannot contain
the split A|B .

Applying this fact to the two splits A∪{x}|B and A∪{y}|B implies either the conclu-
sion of the lemma or that A∪{x}|B ∪{y} and A∪{y}|B ∪{x} are both in Σ(T |A∪B∪{x,y}).
This latter option is excluded by split compatibility. �

Proof of Theorem 31: Because R and S are topologically distinct yet have the same
number of leaves, there must be at least one split in R which is not in S. Say this split is
given by the edge e0. The edge e0 must induce a non-trivial split, and, therefore, assign
e1, . . . , e4 and T1, . . . , T4 such that R can be drawn as in Fig. 3.

Pick any i ∈ {1, . . . ,4}. We claim that the split induced by edge ei is in Σ(S). If
|�(Ti)| = 1 then there is nothing to prove, so assume that |�(Ti)| ≥ 2. Construct a five-leaf
tree by choosing two leaves a, b from �(Ti) and also leaves c, d, e: one from each of the
other three Tj . Because the split induced by e0 is not in S by hypothesis, it also cannot be
in S|abcde . An application of Corollary 40 now implies that the split induced by ei must
be in Σ(S|abcde). This is true for each such choice of abcde: of these choices combined
via Lemma 43 show that the split induced by the edge ei is in Σ(S).

Four applications of Lemma 42 now prove the theorem. �

The following proposition says that the sort of mixture described in Theorem 31 is
possible (assuming the main result of Matsen and Steel, 2007). It is a simple general
fact.
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Fig. 3 Notation used in the proof of Theorem 31.

Proposition 44. Let T1, . . . , T4 be rooted trees and R and S two trees on the taxon set
{1,2,3,4}. Let R̃ and S̃ be the trees obtained from R and S by attaching tree Ti in place
of taxon i. Now if R � S then R̃ � S̃.

Proof: Let the vector y represent the state vector for the terminal taxa on R and S and let
xi represent the state vector for the tree Ti . Let pT

γ (z) mean the probability of state vector z

on a tree T with branch lengths γ ; γ will be omitted if understood. The statement R � S

means exactly that there exist γ1, γ2, γ3 and α such that

αpR
γ1

(y) + (1 − α)pR
γ2

(y) = pS
γ3

(y)

for any state vector y. We observe that

pW̃ (x1, . . . , x4) =
∑

y

pW (y)

4∏

i=1

pTi (xi |yi)

for W = R,S, where pTi (xi |yi) is the probability of state vector xi assuming the root of
Ti is in state yi . This implies

αpR̃
γ̃1

(x1, . . . , x4) + (1 − α)pR̃
γ̃2

(x1, . . . , x4)

=
∑

y

(
αpR

γ1
(y) + (1 − α)pR

γ2
(y)

) 4∏

i=1

pTi (xi |yi)

= pS̃
γ̃3

(x1, . . . , x4),

where the γ̃j are simply the γj along with the branch lengths of the Ti . �

For completeness, we also record when a two class phylogenetic mixture on a tree can
mimic a tree of the same topology under the CFN model.
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Proposition 45. If a two class phylogenetic mixture on a tree mimics a tree of the same
topology under the binary symmetric model, then all branch lengths between the two sets
must be the same with the possible exception of those for a quartet of adjacent edges
sitting inside the tree.

Proof: Assume a counter-example to Proposition 45: i.e. that there exists a tree R with
two branch length sets which differ by more than a quartet of adjacent edges but which
mix to mimic a tree of the same topology S under the binary symmetric model. Therefore,
there exists a partitioning of R into subtrees A, B , and C meeting at a node such that there
is an edge in each of A and B which differs in terms of branch length between the two
sets. Note that if two branch length sets differ on a nontrivial rooted tree, then by induction
one can find an induced rooted subtree of size two which differs in terms of branch length
between the two branch length sets. Therefore, there must be an induced rooted subtree
of size two in each of A and B which differs in terms of branch length between the two
branch length sets. Number the taxa thus chosen from A with 1 and 2, and the taxa chosen
from B with 3 and 4. Label an arbitrary taxon from C with 5. Now consider the induced
5-taxon tree induced by restricting the taxon set to 1 through 5. Label the edges as in
Fig. 2, and assign (induced) ki ’s as before.

From the above, we can assume (perhaps after renumbering) that k1 �= 1 and k3 �= 1.
By restricting R to the taxon set 1234, we have by Lemma 34 that k1 = k−1

2 and k3 = k4

(perhaps after renumbering.) Because k3 �= 1, we have k3 �= k−1
4 . Thus using Lemma 34,

by restricting to 1534, we have k1k6 = k5 and by restricting to 2534 we have k2k6 = k5.
Therefore, k1 = k2 = 1, which is a contradiction. �

4. Conclusion

We have presented a number of new results which help to clarify when non-identifiable
phylogenetic mixtures may pose a problem for reconstruction. However, the message
isn’t completely straightforward. The first section shows that the space of site-pattern
frequency vectors for phylogenetic mixtures on many quartet trees contains a relatively
large non-identifiable region. Furthermore, this non-identifiable region under the CFN
model contains site-pattern frequencies for resolved trees with substantial internal branch
lengths. Yet, these spaces were constructed using specific trees of extreme branch lengths,
raising the question of whether corresponding results hold for more reasonable parame-
ter regimes and “random” sets of trees which one might find from data. Furthermore, we
wonder if it is possible to find simple H -descriptions of the phylogenetic mixture polytope
for larger star trees.

On the other hand, the second section shows generally that phylogenetic mixtures on
just two trees may not pose so much of a problem. In particular, our results make progress
toward showing that clocklike two class phylogenetic mixtures may be identifiable un-
der further assumptions. We also show that pairs of trees under CFN rates-across-sites
mixtures are identifiable. Finally, we show that two class phylogenetic mixtures on a tree
cannot “change” the topology too much.

In general, many interesting questions remain and we look forward to seeing further
progress in this field.
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