
Vol. 29 no. 3 2013, pages 387–388
BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/bts696

Genome analysis Advance Access publication December 6, 2012

nestly—a framework for running software with nested parameter

choices and aggregating results
Connor O. McCoy1,*, Aaron Gallagher1, Noah G. Hoffman2 and Frederick A. Matsen1,*
1Program in Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA and
2Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA

Associate Editor: Alfonso Valencia

ABSTRACT

Summary: The execution of a software application or pipeline using

various combinations of parameters and inputs is a common task in

bioinformatics. In the absence of a specialized tool to organize,

streamline and formalize this process, scientists must write frequently

complex scripts to perform these tasks. We present nestly, a Python

package to facilitate running tools with nested combinations of par-

ameters and inputs. nestly provides three components. First, a

module to build nested directory structures corresponding to choices

of parameters. Second, the nestrun script to run a given command

using each set of parameter choices. Third, the nestagg script to

aggregate results of the individual runs into a CSV file, as well as

support for more complex aggregation. We also include a module

for easily specifying nested dependencies for the SCons build tool,

enabling incremental builds.

Availability: Source, documentation and tutorial examples are avail-

able at http://github.com/fhcrc/nestly. nestly can be installed from

the Python Package Index via pip; it is open source (MIT license).

Contact: cmccoy@fhcrc.org or matsen@fhcrc.org

Received on June 7, 2012; revised on November 9, 2012; accepted on

November 29, 2012

1 INTRODUCTION

Many types of bioinformatics analyses involve running software

or pipelines with a combination of a number of different param-
eters and inputs. For example, one may want to use an estab-

lished algorithm such as BLAST with many combinations of

different parameters, or benchmark the accuracy and speed of

a new algorithm for all possible settings for a number of param-

eters. While a number of tools are available for streamlining
bioinformatics pipelines (Goodstadt, 2010; Köster and

Rahmann, 2012; Sadedin et al., 2012), these tools emphasize

running a dataset through a workflow with a static parameter

regime.
The task of running software with a variety of settings typic-

ally involves enumeration of parameters, execution of a com-

mand for each combination and aggregation of results. Despite
the ubiquity of this sort of task in bioinformatics, we are only

aware of software packages that address it for specific bioinfor-

matics problems (Darriba et al., 2012; Hoekman et al., 2012).

The most common solution is to write a custom script to perform

the tasks, which presents difficulties: isolating execution, running

commands in parallel and merging results with associated par-

ameters can be non-trivial. Managing these tasks in one-off code

creates additional work for researchers, introduces potential for

error and hinders reproducibility.
We have designed a Python software package, nestly, the

purpose of which is to streamline and automate these operations.

2 IMPLEMENTATION

nestly streamlines, organizes and automates running programs

with combinatorial parameter choices. Users write a script using

nestly’s Python API for generating parameter choices. This

API makes expressing combinatorial choices trivial; arbitrary

logic may be used for more complex cases. Once parameters

have been selected, nestly organizes choices in a nested direc-

tory structure, providing an isolated environment in which to run

bioinformatics software for each combination. Parameter choices

are recorded in JSON files in leaf directories.

The nestrun tool facilitates running a command for each

parameter combination in parallel. Commands are executed

within a shell, using a simple syntax for parameter substitution.

The user can therefore create a direct call to a bioinformatics

program for each combination, or a script written in an arbitrary

language.

For the common case of programs with comma- and

tab-delimited outputs, the nestagg tool aggregates results

from the nested directory structure, appending the parameters

used to generate the results to each row.
For incremental builds, we also provide SCons integration,

allowing concise specification of nested dependencies. The

nestly SCons module provides methods for adding a target

for every combination of parameters, and aggregating across

these targets once they have been created or updated. This

feature has been particularly useful for avoiding the repeated

execution of time-consuming upstream steps when developing

downstream components of an analysis.

3 EXAMPLE OF USE

3.1 Enumerating combinations

As an example, we use nestly to set up a comparison of two

implementations of an algorithm to prune leaves from a phylo-

genetic tree to minimize an objective function (Matsen et al.,

2012). The ‘full’ implementation solves the problem exactly,

while the ‘pam’ implementation uses a heuristic. We wish to*To whom correspondence should be addressed.

� The Author 2012. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 387

Downloaded from https://academic.oup.com/bioinformatics/article-abstract/29/3/387/257457
by Fred Hutchinson Cancer Research Center - Arnold Library user
on 01 May 2018

run both algorithms on several 1000-leaf trees, varying the

number of leaves pruned from the trees (‘k’).

To set up a nested directory structure:

import glob
from nestly import Nest, stripext

n¼Nest()
n.add(‘algorithm’, [‘full’, ‘pam’])
n.add(‘tree’, glob.glob(‘/trees/*.tre’),

label_func¼stripext)
n.add(‘k’, [50, 100, 250, 500, 750, 900, 950])
n.build(‘runs’)

This will do the following. It will create a runs directory, in

which there will be two subdirectories, full and pam. Within

each of these, there will be directories labeled with the name of

the tree. Within each of those, there will be directories for each

value of ‘k’, e.g. 50, 100, etc. Within each of those, there will be

a JSON file control.json, which contains the parameter

values corresponding to the directory hierarchy.
This example exhibits nestly on a parameter ‘Cartesian prod-

uct’; online examples show how to use it to build a more complex

subset.

3.2 Running a command

The JSON files thus created then serve as inputs to nestrun

for template substitution, for example:

nestrun -d runs
--template¼‘rppr min_adcl_tree {tree}

--algorithm {algorithm}
--all-adcls-file adcls.csv
--leaves {k}’

This command runs rppr min_adcl_tree in all of the tip

directories with the appropriate values for each parameter, for

example substituting 100 in place of {k} above. The results

we are interested in (--all-adcls-file) will be written to a

file named adcls.csv in each directory. nestrun can run a

user-specified number of jobs in parallel.

3.3 Aggregating results

Given a list of JSON files and the name of the delimited files to

combine, nestagg merges the results together into a single file,

adding columns that label the parameter choices used when gen-

erating those results. The call:

nestagg delim adcls.csv -d runs -o all_adcls.csv

will aggregate data from all of the CSV files named adcl.csv,

one for each control file under runs, appending columns con-

taining the values of algorithm, tree and k from the control file.
For more general cases, a simple framework is available for

defining custom aggregations.

3.4 SCons integration

SCons (http://scons.org) is a build system implemented in

Python that is analogous to make, in that an invocation only
runs what is necessary to fulfill specified dependencies. Our

nestly integration makes it easy to define targets for each
parameter combination that also become part of the control

dictionary.
For example, by including the code from Section 3.1 in an

SConstruct file, we can add our command (abbreviated here):

from nestly.scons import SConsWrap

w¼SConsWrap(nest, ‘build’)

@w.add_target()

def min_adcl(d, control):

set SCons ‘action’ to template as done

above using values from ‘control’

return Command(os.path.join(d, ‘adcl.csv’),

c[‘tree’], action)

This will execute the same combination of commands as

before, but within the incremental build framework of the
SCons build tool. The result of this step is then available via

the control dictionary for future steps. The SCons integration
also has facilities for aggregating results, described in the
nestly documentation.

4 CONCLUSION

nestly is a simple yet powerful framework for running soft-
ware with combinatorial choices of parameters and aggregating

results of those runs. It has complete documentation and a suite
of examples.

ACKNOWLEDGEMENTS

We thank Brian Hodges for contributing to the first version of
nestrun, and to Brad Chapman and two anonymous reviewers
for valuable comments on this manuscript.

Funding:A.G., N.H. and F.M are supported in part by NIHR01
HG005966-01; C.M. is supported in part by NIH R01 AI038518.

Conflict of Interest: none declared.

REFERENCES

Darriba,D. et al. (2012) jModelTest 2: more models, new heuristics and parallel

computing. Nat. Methods, 9, 772–772.

Goodstadt,L. (2010) Ruffus: a lightweight python library for computational

pipelines. Bioinformatics, 26, 2778–2779.

Hoekman,B. et al. (2012) msCompare: a framework for quantitative analysis

of label-free LC-MS data for comparative biomarker studies. Mol. Cell.

Proteomics, 11, M111.015974.

Köster,J. and Rahmann,S. (2012) Snakemake–a scalable bioinformatics workflow

engine. Bioinformatics, 28, 2520–2522.

Matsen,F.A. et al. (2012) Minimizing the average distance to a closest leaf in a

phylogenetic tree. Syst. Biol. (in press).

Sadedin,S.P. et al. (2012) Bpipe: a tool for running and managing bioinformatics

pipelines. Bioinformatics, 28, 1525–1526.

388

C.O.McCoy et al.

Downloaded from https://academic.oup.com/bioinformatics/article-abstract/29/3/387/257457
by Fred Hutchinson Cancer Research Center - Arnold Library user
on 01 May 2018

