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Abstract

Classifying individual bacterial species comprising complex, polymicrobial patient specimens remains a challenge for
culture-based and molecular microbiology techniques in common clinical use. We therefore adapted practices from
metagenomics research to rapidly catalog the bacterial composition of clinical specimens directly from patients, without
need for prior culture. We have combined a semiconductor deep sequencing protocol that produces reads spanning 16S
ribosomal RNA gene variable regions 1 and 2 (,360 bp) with a de-noising pipeline that significantly improves the fraction
of error-free sequences. The resulting sequences can be used to perform accurate genus- or species-level taxonomic
assignment. We explore the microbial composition of challenging, heterogeneous clinical specimens by deep sequencing,
culture-based strain typing, and Sanger sequencing of bulk PCR product. We report that deep sequencing can catalog
bacterial species in mixed specimens from which usable data cannot be obtained by conventional clinical methods. Deep
sequencing a collection of sputum samples from cystic fibrosis (CF) patients reveals well-described CF pathogens in
specimens where they were not detected by standard clinical culture methods, especially for low-prevalence or fastidious
bacteria. We also found that sputa submitted for CF diagnostic workup can be divided into a limited number of groups
based on the phylogenetic composition of the airway microbiota, suggesting that metagenomic profiling may prove useful
as a clinical diagnostic strategy in the future. The described method is sufficiently rapid (theoretically compatible with same-
day turnaround times) and inexpensive for routine clinical use.
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Introduction

In nature, microbes exist in complex communities shared with

other species rather than as pure cultures dominating an ecological

niche. The microbiota in healthy humans [1,2] and in various

human disease states, ranging from chronic infections [3] to

autoimmune disorders and metabolic disease [4], are no excep-

tion, frequently cohabitating organ systems or acting in concert as

polymicrobial biofilms. Nevertheless, the ability of existing

methods in clinical microbiology to rapidly enumerate and

thoroughly classify the diversity of organisms present in such

patient specimens is lacking.

Traditional microbiological classification is rooted in organisms’

morphology and biochemical properties and first requires that

species are isolated by growth in vitro. Only a small fraction of all

bacteria can be successfully cultured, while clinically significant

organisms may be slow-growing, fastidious, inert, or unviable [5].

Individual strains may out-compete others when co-cultured, and

overwhelming numbers of species may be present, prohibiting a

comprehensive workup. 16S ribosomal RNA (rRNA) gene

sequencing is a popular alternative to traditional methods and

provides several advantages [6,7]. DNA sequencing can provide

more definitive taxonomic classification than culture-based

approaches for many organisms [6,7], while proving less time

consuming and labor intensive [6,8]. However, 16S rRNA gene

sequencing using bulk PCR products cannot be applied to

polymicrobial specimens: the presence of multiple templates

results in superimposed Sanger reads that are generally unin-

terpretable [8], [9].
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As first realized through metagenomics research [10], next-

generation sequencing technologies [11] can circumvent these

inherent limitations. Aside from benefits in per-base sequencing

costs and throughput, deep sequencing methods provide individ-

ual sequence data for millions of DNA molecules, allowing each to

be classified independently. Regardless, next-generation 16S

rRNA gene sequencing methods have not been utilized in clinical

microbiology practice due to barriers in sequencing costs and

procedural challenges including the time and effort required to

prepare and sequence libraries and the complexity of the analysis;

these objectives must be completed within a timeframe that can

meaningfully inform patient care.

Here, we develop a rapid and inexpensive culture-free next-

generation sequencing assay able to accurately catalog bacterial

species directly from highly complex patient specimens by 16S

rRNA gene deep sequencing. As a proof of principle, we explore

the utility of this assay in comparison to existing clinical

microbiology techniques across a collection of challenging clinical

samples and cystic fibrosis sputum samples.

Materials and Methods

Ethics Statement
Although human-derived samples were used in this study, this

work is not considered human subjects research, and is not

considered to involve human participants per University of

Washington Human Subjects Division because the material

constituted non-identifiable, leftover clinical specimens that were

not collected specifically for this study (UW IRB Doc #295). As

this work is not human subjects research and does not involve

human participants, this work is exempt from needing ethical

approval and written informed consent:

‘‘Use of Non-Identifiable Specimens/Data . . .requires neither

determination of exempt status nor IRB review’’ (UW IRB Doc

#295).

Per UW IRB Document #359:

‘‘2.4.2 The UW IRB interprets this definition to mean that a

human specimen falls within the definition of health care

information only when:

N It can be tied to an individual, and

N It was obtained in the course of diagnosing, treating, or

otherwise providing health care in the state of Washington.

2.4.3 This means that a human specimen is not, in and of itself,

considered to be a human subject by state law, unless it can be

readily connected to an individual.’’

Only ‘‘If your research activity involves human subjects, it is

necessary to complete the appropriate HSD form for submission,

review, and approval prior to commencement of the research

activity.’’

Use of leftover, non-identifiable patient samples is ‘Not Human

Subjects Research’ as defined by the UW IRB, and does not

require UW IRB approval (UW IRB Doc #295).

We completed and filed with the UW IRB a self-determination

form for approval of Use of Non-Identifiable Specimens/Data,

which was approved by the Department Chair of Laboratory

Medicine, and which states that ‘‘the project requires neither

determination of exempt status nor IRB review’’ (UW IRB Doc

#295).

With specific respect to written informed consent: Per UW IRB

review (UW IRB Doc #295 and #359, as cited above), this work

did not involve human participants, and thus, no waiver for the

need of written informed consent was required. The University of

Washington IRB board has deemed this research ‘‘Not Human

Subjects Research’’, therefore does not involve human participants

(UW IRB Doc #295).

Samples and DNA purification
Microbiological culture, isolation and identification of species

were performed by the University of Washington Clinical

Microbiology Laboratory, according to standard clinical proce-

dures. Briefly, samples submitted for ‘‘Lower Respiratory Culture

for Cystic Fibrosis’’ (referred to hereafter as ‘‘CF sputum samples’’)

were mixed 1:1 with 0.0648 M dithiotreitol (Sigma) and incubated

for 5 minutes at room temperature, followed by vigorous vortexing

for 1 minute. 50 ml aliquots of mucolysed sputa each were plated

on sheep blood agar, MacConkey, chocolate, manitol salt, and

cepacia agar culture plates. The remaining specimen was stored at

220uC until DNA extraction was performed.

DNA was extracted from isolated colonies or from the

remaining volume of mucolysed sputa using a NucliSENS

Easymag automated DNA extractor (BioMerieux). For CF sputa

samples we included one extraction control per batch of 24

samples processed simultaneously. Abscess and lymph node biopsy

material were purified with High Pure PCR Template Preparation

Kit (Roche). Extracted DNAs were quantified by Qubit dsDNA

HS kit (Life Technologies). For mixing studies, the relative

contribution of 16S rRNA alleles from each organism was

estimated from quantified input DNA, average genome size of

sequenced reference strains, and average 16S rRNA locus copy

number for the species. A mixture of 16S rRNA template from the

following organisms was used: P. aeruginosa , 80%; B. cepacia ,

14.11%, S. pyogenes, 5.65%; M. tuberculosis, 0.24%.

Bacterial genomic DNA isolated from isolates of clinical

specimens was sequenced by the University of Washington

Molecular Microbiology Laboratory using the Sanger method to

establish 16S rRNA gene reference sequences or to attempt

molecular diagnosis, where applicable.

Three clinical specimens were excluded from the final analysis.

CF13 and CF46 each generated too few de-noised bacterial

sequence reads for meaningful analysis (2682 reads and 411 reads,

respectively), likely secondary to poor balancing of the libraries.

CF90 was also excluded, as we could not adequately confirm the

identity of this specific specimen.

Target Selection
The 16S rRNA gene contains nine variable regions (designated

V1 to V9) [12]. Here we chose the V1–V2 region, which has

previously proven useful in research-oriented metagenomic

surveys [13–15] and is used clinically for conventional sequenc-

ing-based classification assays, because it can provide species-level

classification of clinically-relevant bacteria, permits selective

exclusion of contaminating eukaryotic sequences (which share

homology with some conserved regions of prokaryotic 16S rRNA

genes) from PCR amplification [16], and is a relatively small

fragment (,360 bp) that permits PCR amplification from partially

degraded specimens.

Sequencing library generation
The sequences of PCR primers used for library preparation

(Integrated DNA Technologies, PAGE purified) are supplied in

Table S1. All PCR setup was performed in a laminar flow PCR

workstation, and materials were UV irradiated prior to PCR

setup. PCR to amplify 16S rRNA was carried out in two stages.

Prior to the second stage, unincorporated primer was removed by

DNA purification and additional cycles of PCR were performed

using primers specific to the sequencing adaptor, amplifying only

16S rRNA Next-Generation Sequencing
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the molecules generated during initial PCR cycles. We found that

this two-stage PCR strategy greatly reduces the amount of

amplification from non-template controls.

For the first round of PCR, a primer directed against the V1

flanking region (Primer P1) was used in conjunction with forward

primers incorporating (from 59 to 39) Ion Torrent sequencing

adaptor P1, a sample-specific ‘‘DNA molecular tag’’, a 14-base

semirandom sequence (intended to uniquely identify original

template molecules [17], but not utilized in these studies), and

lastly a universal bacterial primer directed against the 16S rRNA

V2 flanking region (Primer N_Barcode_357mI). To minimize

amplification of contaminating bacterial DNA present in PCR

reagents [18,19], 1:10 diluted AmpliTaq DNA polymerase

(Applied Biosystems) was used during two initial cycles of PCR

amplification [19]. PCR was conducted using a 0.9 mM concen-

tration of each primer, and 1–10 ng DNA template according to

the following cycling conditions: one cycle of 95u for 10 minutes,

two cycles of 95u for 30 seconds, 55u for 30 seconds, 72u for

1 minute 15 seconds, then one cycle of 72u for 10 mintues.

Amplification products were purified using 0.7 volumes of

Agencourt AMPure beads (Beckman Coulter), without removing

the beads after elution. The second round of PCR was carried out

using the recommended concentration of AmpliTaq with a

0.44 mM concentration of each primer. Primers for this step were

composed of the Ion Torrent paired-end sequencing adaptor P1

joined to the V1-targeted primer (P1_PE_Adaptor) and a 59

fragment of Ion Torrent sequencing adaptor A (Universal_

357mI_Primer). The entire volume of purified amplicon from

the first PCR reaction was amplified according to the following

cycling conditions: once cycle of 95u for 10 minutes, 35 cycles of

95u for 30 seconds, 68u for 30 seconds, 72u for 1 minute

15 seconds, then one cycle of 72u for 10 mintues. Final PCR

products were purified with 0.7 volumes Agencourt AMPure

beads, eluted in low TE, and quantified by Qubit dsDNA HS kit.

Equal quantities of PCR product from each sample were pooled

for sequencing (Table S2), and the final concentration of each

library was determined using a Bioanalyzer High Sensitivity DNA

Kit (Agilent).

Semiconductor Sequencing
Sequencing was performed by Life Technologies (Beverly, MA).

The sequencing protocol was under development, particularly

during the timeline of this project, and the details of the procedure

had not been fully optimized for commercial release of 400 bp

sequencing kits. For emulsion PCR, the protocols for the Ion

PGMTM 200 XpressTM Template Kit (Life Technologies) were

modified to accommodate clonal amplification of the sequencing

templates on to Ion Sphere Particles (ISPs, Life Technologies).

The amount of ISPs and library molecules added to the emulsion

was increased by 55%. A new polymerase and changes in salt

conditions were also required for full extension of the longer

template reads. PCR thermocycling conditions were modified as

follows: one cycle of 95u for 6 minutes, 15 cycles of 95u for

30 seconds, 68u for 4 minutes, 30 cycles of 95u for 30 seconds, 68u
for 6 minutes, then 10 cycles of 95u for 30 seconds, 68u for

20 minutes. Enrichment and quantification of template beads was

performed according to manufacturer protocols.

400 bp semiconductor sequencing also required optimization in

sequencing workflow and chemistries. A proprietary sequencing

enzyme has been developed to increase both accuracy and read

lengths, with concurrent optimization of flow order and nucleotide

flow rates. Sequencing was performed on an Ion Torrent PGM

(Life Technologies) using 800 flows (200 cycles), as opposed to the

standard 520 flows. All sequencing was performed using 318 chips,

with an approximate runtime of 7 hours per chip. Primary base

calling was performed using Torrent Suite v3.0 software (Life

Technologies), and sequences were exported in FastQ format.

FastQ files were used for all subsequent analyses. Raw sequence

reads for this project are available from the Sequence Read

Archive (http://www.ncbi.nlm.nih.gov/sra), under study accession

number SRP019805.

Sequencing reagents and protocols have subsequently been

optimized and are available as Ion Torrent 400 bp sequencing kit

(Life Technologies).

Data processing and de-noising
We required that reads exceed 330 base pairs in length and

contain one or fewer mismatches against a barcode sequence to

pass initial filtering. Primer sites were identified in each read using

the Smith-Waterman alignment algorithm (ssearch36) [20] with

the requirements that sequence regions corresponding to forward

and reverse PCR primer sites appeared in specified flow position

windows and primer alignments exceed a threshold Z-score of

100, defined based on visual inspection of alignments and

corresponding distributions of Z-scores. Reads not meeting these

criteria were discarded, and remaining reads were trimmed to

exclude primer sites.

De-noising of trimmed reads was accomplished by (1) perform-

ing a modified [21] form of run-length encoding [22], in which

each homoploymer is replaced by a single nucleotide and the

homopolymer length is recorded; (2) clustering the encoded reads

at 98.5% identity using USEARCH v6 [23]; and (3) creating

multiple alignments of encoded reads comprising clusters of three

reads or greater using MUSCLE v3.5 [24]. To minimize

computational time, clusters of greater than 100 reads were

randomly grouped into smaller sets of 100 to no more than 150

sequences and each was aligned separately. (4) A consensus was

generated from each multiple alignment by expanding the most

frequent character at each position by the most frequent run-

length for that character. (5) Identical consensus sequences were

aggregated and the total number of reads representing each was

recorded.

Parameters for de-noising were chosen empirically by calculat-

ing error rates as described below using sequences generated from

control specimens containing a mixture of reference organisms

with known 16S rRNA gene sequences (Figure S1). Parameters

for de-noising were selected to maximize both the number of

recovered reads and the pairwise identity of those reads compared

to the appropriate reference sequence. We found that a clustering

threshold of 98.5% or greater pairwise similarity combined with

exclusion of clusters composed of fewer than 20 reads resulted in

the most favorable combination of error rate and read recovery.

For evaluation of non-template and extraction controls, clusters

composed of 10 reads or greater were considered in order to

further increase sensitivity.

De-noised reads from this project are available in File S1.

Error rate calculations
Tabulation of errors was performed by calculating pairwise

alignments of either individual reads or de-noised cluster

consensus reads against a reference sequences obtained from

Sanger sequencing of control specimens, and counting errors in

the former relative to the latter. To minimize the effect of

alignment artifacts arising from homopolymer miscounting errors,

we also used run length encoding to improve the quality of

pairwise alignments: we run-length encoded both reference

sequences and reads or consensus sequences as described above,

performed pairwise alignment of encoded sequences using the

16S rRNA Next-Generation Sequencing
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Smith-Waterman algorithm (ssearch36) [20] with a gap opening

penalty of 3 and a gap extension penalty of 8, then run-length

decoded both sequences in the context of each pairwise alignment.

Errors were categorized as follows: single nucleotide substitution,

homopolymer indel (homoindel), indel in nonredundant sequence,

and compound error (event involving two or more categories). To

minimize errors attributable to low-levels of sequences originating

from contaminating DNA in PCR reagents, we excluded raw

reads having a Z-score,580 in a pairwise alignment with a

reference sequence, a cutoff which we found to exclude reads that

were dissimilar to reference sequences but similar to exogenous

sequences based on BLAST searches against a database of 16S

rRNA gene sequences (described below).

BLAST database construction
Candidate full-length 16S rRNA gene sequences (‘‘RDP-full-

length’’) were downloaded from the Ribosomal Database Project

(RDP, Release 10, Update 30) [25] by selecting the options

‘‘isolates,’’ ‘‘good quality,’’ and ‘‘.1200 bp.’’ We created two

additionally curated databases derived from these candidate

sequences. The first (‘‘RDP-named’’), was generated by first

removing records with non-canonical taxonomic names (for

example, names indicating direct submissions of unclassified

organisms), then by clustering sequences by species and rejecting

records with a pairwise identity to the cluster medoid of less than

98.5%. Filtering and annotation was performed using DeeNuRP

(https://github.com/fhcrc/deenurp), and taxtastic (https://github.

com/fhcrc/taxtastic). The second reference database was a

collection of reference sequences for the purpose of classifying

CF pathogens in comparison to culture (‘‘CF pathogens’’). To

further minimize mis-annotation, we compared sequences in

RDP-named to a collection of sequences spanning 16S rRNA V1–

V2 or V1–V3, generated from clinical isolates identified in the

Molecular Microbiology Laboratory at the University of Wash-

ington Medical Center. We used all sequences from clinical

isolates representing genera containing any species designated as a

CF pathogen. The CF pathogens database was then constructed

by retaining any full-length sequence in RDP-named with both

$99.5% identity (with at least 99% coverage) when aligned to a

clinical sequence using BLAST, and with the same species-level

taxonomic label.

Phylogenetic reference set creation
The pplacer suite of tools (v1.1.alpha13r2-249-g71f99d8) per-

forms phylogenetic-based classification and population analysis by

adding query sequences to a phylogenetic tree comprised of

reference sequences [26]. Reference sequences are most conve-

niently provided in a ‘‘reference package’’ containing a multiple

alignment and corresponding phylogenetic tree, along with

taxonomic and other annotation [27]. We created two reference

packages by recruiting 16S rRNA reference sequences based on

similarity to denoised reads from CF specimens, and then selecting

representatives of each species using ‘‘deenurp search-sequences’’

and ‘‘deenurp select-references’’ in DeeNuRP. Reference sequence

selection for species of interest was performed by minimizing the

average distance to the closest leaf (ADCL) of reads placed on a

phylogenetic tree of candidate reference sequences as implement-

ed in ‘‘guppy adcl’’ [27]. The first reference package (CF-named,

File S2) was assembled from sequences in RDP-named and was

used for taxonomic assignment; the second (CF-unnamed, File
S3) was assembled by comparing denoised reads to the RDP-full-

length database. Multiple alignments of reference sequences were

created using cmalign [28], and phylogenetic tress were built with

FastTree [29]. Reference packages were assembled using taxtastic.

16S rRNA Classification
We classified sequences using a combination of BLAST searches

against curated databases of 16S rRNA sequences (RDP or custom

BLAST databases, as described above) and phylogenetic-based

classification using pplacer.

We performed high-confidence species-level classification of

denoised sequences on the basis of BLAST searches [30] against

either the RDP-named (for brain abscesses and lymph node

biopsy), or the CF-pathogens databases (for CF sputum speci-

mens). We took a conservative approach to assigning taxonomic

names to denoised reads: we assigned each consensus sequence the

taxonomic name or names of any reference sequences aligning

with at least 99% pairwise identity and 95% sequence coverage.

Compound names (for example ‘‘Streptococcus mitis/oralis’’) were

constructed when reference sequences representing more then one

species met these criteria. Consensus sequences with no qualifying

matches were designated ‘‘no match’’.

To perform a more comprehensive taxonomic assignment of the

CF sputum specimens, we used pplacer to perform phylogenetic

placement of denoised reads onto the CF-named reference set

described above. Multiple alignments of reads to reference

alignments were created with cmalign. After placement, ‘‘guppy

classify’’ was used to perform taxonomic assignment using default

parameters. To remain consistent with conventions used in the

clinical molecular microbiology lab for classifying closely related

species, we modified the pplacer classification results as follows: any

genus- or species-level names within family Enterobacteriaceae were

renamed to ‘‘Enterobacteriaceae’’; Pseudomonas hibiscicola was renamed

to Stenotrophomonas maltophilia; any combination of Streptococcus mitis,

S. oralis, S. pneumonia, or S. pseudopneumoniae was renamed to S. mitis/

oralis/(pseudo)pneumoniae; any species belonging to the B. cepacia

complex was renamed ‘‘Burkholderia cepacia complex’’; and mem-

bers of any combination of Achromobacter denitrificans, A. insolitus, or

A. xylosoxidans was renamed to A. denitrificans/insolitus/xylosoxidans.

In addition, reads classified by ‘‘guppy classify’’ as Pseudomonas

aeruginosa group were renamed to P. aeruginosa on the basis of

BLAST results for the same reads.

Phylogenetic grouping of CF specimens
CF specimens were grouped on the basis of the distribution and

read mass (the cumulative number of reads contributing to

clusters) and were placed onto the CF-unnamed reference tree by

‘‘squash’’ clustering [31] using ‘‘guppy squash’’, as implemented

by pplacer. To assess the stability of clades comprised by groups of

specimens, we performed 100 bootstrap replicates; resulting trees

were summarized using the script sumtrees.py as provided in

DendroPy v3.3.1 [32]. Groups of specimens were defined by

considering a combination of branch length, bootstrap support of

70% or greater, the visual cohesiveness of clades, and species

composition. The ‘‘squash’’ tree is shown with additional

annotation for specimen names and bootstrap support values in

Figure S2. Seven samples (CF5, CF23, CF37, CF64, CF69,

CF71, and CF74) were not assigned to any group because their

composition was markedly divergent from other samples in the

closest clade. For example, sample CF5, comprised primarily of

reads classified as Acinetobacter spp., was clearly an outlier from

Group II (dominated by Pseudomonas aeruginosa) and was therefore

not included in that group. Each of the branches corresponding to

these unassigned samples (or in the case of CF69/CF37 and

CF64/CF71, pairs of samples) was present in 100% of bootstrap

replicates, consistent with strong support for their divergence from

adjacent clades.

16S rRNA Next-Generation Sequencing
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Results

Semiconductor sequencing
To efficiently generate sequencing libraries we concatenated

sequencing adaptors with PCR primers for amplification of a 16S

rRNA sequencing target (variable regions V1–V2), which is

sequenced clinically to achieve species-level classification of

bacterial pathogens. Forward primers contained a 10-base

‘‘barcode’’ sequence to uniquely label products originating from

a specific sample, allowing specimen multiplexing within the same

sequencing run.

The length of the target (,360 bp) and artificial flanking

sequences (,30 bp) exceeded current capabilities of semiconduc-

tor sequencing, so it was necessary to develop new protocols to

extend the read length. Emulsion PCR, used to prepare template

molecules for sequencing by clonally amplifying them on beads,

incorporated modified conditions for microdroplet formation and

a new PCR enzyme was employed. Sequencing itself was

performed using a novel DNA polymerase selected to maximize

sequence quality while most efficiently synthesizing longer

templates. Flow rates on the sequencing instrument were

additionally optimized to improve accuracy and performance for

longer template molecules.

Libraries were pooled from an average of 16 samples each, and

were sequenced on a single Ion Torrent PGM using 318 chips. An

average of 3,374,183 reads (range = 3,111,252 to 3,681,712) were

obtained per chip. Full-length sequence reads comprised ,18% of

all reads (Figure 1A). Only full-length reads that could confidently

be assigned to a known barcode sequence were considered for

downstream analysis. After filtering, we obtained an average of

53,688 reads per sample.

Sequence error rate, de-noising, and data processing
To assess the per-read error rate we deep sequenced a mixture

of DNA from four reference organisms (Pseudomonas aeruginosa,

Burkholderia cepacia, Streptococcus pyogenes, and Mycobacterium tuberculo-

sis) and compared the reads to corresponding Sanger sequences.

The average per-read error rate varied per organism (Figure 1B),

suggesting sequence-dependent influence on read fidelity. Semi-

conductor sequencing is prone to insertion and deletion (indel)

errors in homopolymer tracts (‘‘homoindels’’) [33], and we

accordingly found those errors to be most prevalent (averaging

0.8325% per base), exceeding rates of indels in non-redundant

sequence (0.435%). Single-base substitution errors were relatively

rare (0.07%). Overall errors averaged 1.34% per base per read,

similar to published estimates for the Ion Torrent platform [34–36].

Molecular classification of species is generally considered to

require 98% or greater identity in comparison to a reference

sequence [5,7], while high confidence species-level classification in

a clinical setting may require close to 100% identity. Given

observed error rates, most individual reads contain too many

errors to meet these requirements. Error correction by ‘‘de-

noising’’ has been used to make high-throughput sequence data

more robust [37], however, existing methods incorporate error

models specific to 454 chemistries and are therefore not easily

generalizable to semiconductor sequencing [21,22,38]. We instead

developed a model-free approach to perform error reduction.

Briefly, reads were subjected to a modified [21] form of run-length

encoding [22], which compressed homopolymer tracts into a

representative nucleotide while recording the number of bases in

the tract (‘‘run-length’’). Encoded sequences were clustered by

pairwise identity, and a multiple alignment of each cluster

comprised of at least 20 reads was created. Decoded consensus

sequences were generated by calculating the most prevalent

nucleotide and run-length at each compressed position, then

expanding encoded homopolymer tracts accordingly. This ap-

proach simultaneously reduces base substitution and indel errors

in the resulting consensus sequences. Each consensus sequence is

assigned a ‘‘read mass’’ corresponding to the number of reads

contained in the clusters that contributed to it.

We identified de-noising parameters (Figure S1) that reduced

the overall error frequency to an average of 0.633% per base per

sequence (Figure 1B), and greatly increased the fraction of error-

free sequences (Figure 1C). De-noising discarded an average of

21.9% of input reads per sample, which were not included in

clusters of sufficient size.

Removal of contaminating sequences
Numerous studies have described exogenous species in 16S

rRNA surveys as a consequence of contaminating bacterial DNA

in PCR reagents [18,19]. We performed deep sequencing of non-

template and extraction controls to assess this potential. Compared

to experimental samples, controls generated limiting quantities of

PCR product and were therefore sequenced at 1/100 the

concentration of experimental samples. Low numbers of bacterial

sequences were obtained from these controls (range 12 to 2476, or

0.02% to 4.2% of the median read count for all clinical specimens)

which displayed high similarity to references from Cupriavidus

metallidurans and Delftia acidovorans, organisms with industrial

applications [39,40], and Pelomonas saccharophila, Burkholderia

sediminicola/fungorum/bryophila, Herminiimonas saxobsidens/glaciei/fonti-

cola, and Ralstonia pickettii, environmental organisms (the latter two

also being noted biomedical contaminants [41,42]), consistent with

environmental and/or industrial sources of contamination. To

prevent artifactual findings in experimental samples, we therefore

removed de-noised consensus reads classified as an organism

present in amplification controls. However, contaminating se-

quences were recovered in only approximately 50% of samples

and occurred with low read counts (typically in the tens of reads).

A related issue pertains to the possibility of cross-contamination

between specimens. In addition to the low-level of contamination

of presumed environmental origin, we amplified sequences from

the non-template and extraction control specimens originating

from organisms present in high concentration in CF sputa samples

(1 to 13 raw reads), consistent with low-level cross contamination

from clinical specimens. One specimen (CF38) contained a high

concentration of B. cepacia as determined by both deep sequencing

and by culture. We found a small number of reads in three

samples from adjacent PCR wells (one cluster in each of three

specimens, ranging from 12–19 reads) that were identified as B.

cepacia. This finding suggests a low, but detectable, degree of cross-

contamination. The cluster size cutoff of 20 reads, found optimal

for de-noising, also excluded clusters containing reads attributable

to this low level of cross-contamination.

Recovery of low-prevalence species in polymicrobial
specimens and reproducibility

To assess how effectively deep sequencing recovers low-

prevalence bacterial species in a complex sample, we sequenced

technical replicates of a mixture of purified DNA containing each

of the four reference sequences. The estimated relative abundance

of each template ranged from 0.25% to 80%. We explored the

extent to which detecting minority species is limited by read depth

by considering sensitivity given differing numbers of reads

randomly subsampled prior to de-noising (Figure 2).

The relative representation of organisms was consistent between

de-noised and unprocessed reads, across different library prepa-

rations of the same control specimen, across the concentrations of
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initial template DNA used, and among randomly selected subsets

of reads of varying sizes. We detected sequences from Mycobac-

terium tuberculosis, which accounted for only 0.25% of 16S rRNA

template in the original mixture, in all replicates. The objective of

this experiment was primarily to demonstrate sensitivity and

technical reproducibility, and we only have estimates of the

relative proportion of each of the organisms represented in the

mixture. Therefore, we cannot define the precision with which the

relative abundance of each organism is reflected by read counts.

Bias in the relative amplification efficiency of 16S rRNA from

heterogeneous samples is a recognized artifact [43], and

metagenomic assays relying on PCR amplification should be

considered semi-quantitative. The precise limits of sensitivity in

detecting minor species and the extent to which the assay is truly

quantitative for a given species is therefore likely dependent on the

particular combination of organisms present. However M.

tuberculosis was consistently detected in simulated down-sampling

of experimental data to as few as 5,000 reads, suggesting that

depth of sequencing may provide some buffer against failing to

detect minority species due to amplification and sampling bias

should they exist.

Characterizing mixed, unculturable clinical specimens
One aim of this study was to assess the performance of deep

sequencing relative to existing clinical microbiology techniques.

To this end, we deeply sequenced challenging clinical samples and

compared our results to those obtained using culture and Sanger

sequencing of bulk PCR products (Table 1, Dataset S1). We

focused on specimens that could not be adequately characterized

by conventional techniques. To facilitate a direct comparison

among methods, we used a BLAST-based classification, requiring

at least 99% identity with a reference sequence to assign a

classification. Although this conservative approach left a significant

fraction of reads in some specimens unclassified at the species level

(Table S3), it is consistent with criteria used in the clinical

laboratory for classification by Sanger sequencing and provides a

similar level of confidence in assigned classifications.

We first sequenced four brain abscess aspirates submitted for

conventional molecular characterization by bulk 16S rRNA

sequencing. Brain abscesses contain mostly non-viable organisms

and therefore frequently fail identification by culture-based

techniques [44]. However, they also prove problematic for

molecular classification due to the presence of a mixed population

of bacterial species translocated from oral and nasopharyngeal

Figure 1. Distribution of read lengths and sequence errors. (A) Kernel density plot of read lengths obtained by extended-length ion
semiconductor sequencing. Each line represent results from an independent library, black line indicates library containing controls for error rate
calculations and sensitivity studies. Vertical line marks the cutoff for full-length sequences. (B) Error rates for unprocessed and de-noised sequence
reads, stratified by error type and reference organism. (C) Cumulative proportion of unprocessed and de-noised sequence reads at defined error
counts. For unprocessed reads the fraction of sequences represented at a particular error count reflects the number of reads, and for de-noised
sequences it reflects the total number of reads contributing to clusters.
doi:10.1371/journal.pone.0065226.g001
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cavities [44] contaminated with abundant human cells. Perhaps

unsurprisingly, all samples considered here failed culture-based

identification and were also un-interpretable by Sanger sequenc-

ing. In comparison, deep sequencing confidently identified

multiple bacterial species from each specimen with identical or

nearly identical BLAST alignments against 16S rRNA reference

sequences (Dataset S1). Organisms identified were typical of

human oral microbiota, including Streptococcus intermedius, Porphyr-

omonas endodontalis, Prevotella oris, and Peptostreptococcus stomatis, which

have been implicated as relevant organisms in brain abscess

formation [44].

We then sequenced a lymph node biopsy for which molecular

characterization suggested a Veillonella species based on the

interpretation of a mixed-appearing, but still interpretable,

electropherogram. Deep sequencing confirmed the presence of

Veillonella species, but identified 16 additional bacterial species not

detected by Sanger sequencing, presumably because they were

detectable only as minor components of the mixed-appearing

background. These findings indicate that even samples that are

interpretable by Sanger sequencing may harbor a diverse, and

otherwise unrecognized, bacterial population.

Characterizing cystic fibrosis sputum specimens
Next, we examined sputum samples from cystic fibrosis (CF)

patients, whose airways become chronically colonized by a

complex mixture of phenotypically variable microbiota [45].

Because such samples are unsuitable for conventional 16S rRNA

sequencing, culture remains the standard method for investigating

their composition. We deeply sequenced 66 sputum specimens

collected from patients seen within the University of Washington’s

medical system over a 2-month period (March 23 to May 21,

2012). Specimens were submitted either as routine surveillance

cultures that are intended to identify specific CF pathogens (for

example, P. aeruginosa and members of the B. cepacia complex) or

for identification of causative organisms during acute respiratory

exacerbations. Samples were obtained without selection for patient

characteristics or clinical indication for culture, and therefore

represent a comprehensive sampling of patient samples during this

period. These specimens were submitted with an order for ‘‘Lower

Respiratory Culture for Cystic Fibrosis.’’ Because these specimens

were otherwise de-identified, we cannot confirm the diagnosis of

CF, and it is possible that some represent patients with other

conditions. In parallel, our CLIA-certified clinical microbiology

laboratory performed diagnostic sputum culture according to

standard practices, and we performed deep sequencing of DNA

purified from the remaining specimen (Dataset S1).

We first compared the ability of culture and deep sequencing to

identify a targeted panel of CF pathogens of clinical interest, and

whose presence in CF patient specimens is routinely evaluated by

the clinical laboratory (Table 2). Sixty CF sputa were included in

this analysis, because culture results were not available for 6

specimens. Public databases of 16S rRNA sequences are well

known to contain misclassified, mis-annotated, and otherwise

anomalous records [46], so for this analysis we created a carefully

curated database of reference sequences limited to organisms of

clinical interest in this context and classified de-noised reads using

high-stringency BLAST searches as before. Culture and deep

sequencing were concordant in most cases, but there were some

notable differences. Stenotrophomonas maltophilia, Streptococcus agalac-

tiae, Haemophilus influenzae, and Pseudomonas aeruginosa were detected

more frequently by deep sequencing than by culture-based

methods. Considering results for this set in aggregate, deep

sequencing identified specific CF-relevant pathogens with greater

frequency than culture (105 from deep sequencing, compared to

94 by culture). Conversely, in 22 cultured organisms (distributed

across 17 of the 60 samples) were not reported by deep

sequencing, with the most frequent example being S. aureus, which

was detected by culture alone in 8 separate instances. Six of these

missed organisms were recovered in de-noised clusters of less than

20 reads or identifiable using BLAST searches of the raw data

(prior to de-noising), suggesting that loss of reads during de-noising

at least partially accounts for these failures. Greater sequence read

depth would presumably have resulted in detection of the missed

organisms in these cases. For the remaining specimens, we found

no correlation between failure rate and the relative abundance of

the missed organisms based on culture (not shown). We also noted

inconsistent mucolysis of unusually thick sputa in several samples,

which may have resulted in non-homogenous sample aliquots

separately being subjected to culture and DNA extraction.

Metagenomic analysis of CF sputa
To more fully characterize the bacteria present in CF

specimens, and to overcome limitations of a purely identity-based

classification approach, we used the pplacer [26] software to add de-

noised reads to a phylogenetic tree comprised of 16S rRNA

reference sequences to support broader classification. As antici-

pated, when classifying using this larger database, deep sequencing

recovered a much larger diversity of organisms than routine

methods, including anaerobic and fastidious bacteria expected to

be unculturable through standard techniques [47] (Dataset S1,
Figure 3C). A total of 122 species-level classifications were

obtained, compared to 18 by culture (sometimes coupled with

molecular studies). The organisms most frequently detected among

sputum samples from CF patients encompassed both canonical CF

pathogens and normal respiratory and oral microbiota, but also

Figure 2. Recovery of low-prevalence species in polymicrobial
specimens and reproducibility. The fraction of de-noised sequence
reads with highest pairwise alignment scores to the indicated reference
sequence among four replicates of sequencing a mixture of reference
organisms. Replicates 3 and 4 were generated from 1/10 and 1/100 the
template DNA of the other replicates, respectively. The number of de-
noised reads (black) or unprocessed reads (red) contributing to each
analysis is indicated on the x-axis.
doi:10.1371/journal.pone.0065226.g002
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included uncommon opportunistic pathogens such as Corynebacte-

rium pseudodiphtheriticum [48].

We compared the bacterial communities among CF samples

using ‘‘squash’’ clustering [31], which compares specimens based

on both the relative abundance and phylogenetic relatedness of

organisms (Figure 3A, Figure 3B upper panel , Figure S2). Of

the 66 sputum samples , 59 could be assigned to one of five major

groups, reflecting broad similarities in microbial composition not

apparent from culture results (Figure 3B, lower panel). Only

seven samples could not placed into one of these groups given

either their ambiguous placement on the ‘‘squash’’ tree or their

metagenomic makeup. Groups were distinguishable from one

Table 1. Uncultured clinical specimens and sequencing results.

Deep Sequencing Results

Specimen Name/Clinical Sanger
Sequencing results Species name

% of
total
Reads

Number
of Reads

Number
of De-
noised
Clusters

Maximum
% Identity

Minimum
%
Identity

Brain 1/ Streptococcus constellatus/intermedius 36.86 11269 5 99.69 99.07

No diagnosis (multiple templates) No match $99% 34.43 10526 29

Porphyromonas endodontalis 28.55 8728 11 99.68 99.05

Streptococcus constellatus 0.17 52 2 99.08 99.07

Brain 2/ Staphylococcus epidermidis 99.01 6874 9 99.68 99.01

No diagnosis (multiple templates) Comamonas testosteroni* 0.69 48 1 100 99.31

No match $99% 0.3 21 1

Brain 3/ No match $99% 44.44 6155 33

No diagnosis (multiple templates) Prevotella oris 31.62 4379 4 99.37 99.05

Porphyromonas endodontalis 15.6 2161 3 99.68 99.37

Streptococcus constellatus/intermedius 6.28 870 1 99.69 99.08

Peptostreptococcus stomatis 2.06 286 2 99.41 99.12

Brain 4/ No match $99% 64.12 11410 24

No diagnosis (multiple templates) Porphyromonas endodontalis 25.06 4459 12 99.68 99.05

Streptococcus constellatus/intermedius 10.71 1905 2 99.69 99.07

Streptococcus constellatus 0.12 21 1 99.08 99.08

Lymphnode/ Veillonella parvula/dispar/atypica 23.6 2742 1 99.7 99.05

Veillonella species No match $99% 22.36 2599 17

Fusobacterium periodonticum* 17.16 1994 2 100 99.32

Veillonella dispar/parvula*/denticariosi 10.55 1226 3 100 99.07

Streptococcus oralis 5.65 657 2 99.36 99.36

Prevotella nanceiensis* 5.22 607 3 100 99.04

Campylobacter concisus 2.95 343 1 99.03 99

Streptococcus parasanguinis 2.62 304 1 99.68 99.05

Peptostreptococcus stomatis 2.36 274 1 99.71 99.41

Streptococcus salivarius/vestibularis/thermophilus 2 232 1 99.68 99.05

Veillonella dispar*/parvula* 1.59 185 2 100 99.07

Streptococcus pseudopneumoniae/pneumoniae/mitis/oralis 0.69 80 2 99.68 99.03

Rothia mucilaginosa 0.64 74 1 99.68 99.04

Haemophilus parainfluenzae 0.46 54 1 99.36 99.04

Gemella haemolysans 0.31 36 1 99.69 99.69

Streptococcus constellatus*/intermedius 0.31 36 1 100 99.38

Oribacterium sinus 0.25 29 1 99.69 99.69

Veillonella atypica 0.24 28 1 99.69 99.69

Gemella sanguinis 0.22 25 1 99.69 99.69

Fusobacterium periodonticum/nucleatum 0.22 25 1 99.66 99.32

Capnocytophaga sputigena 0.22 25 1 99.67 99.02

Prevotella melaninogenica 0.2 23 1 99.68 99.05

Streptococcus infantis 0.2 23 1 99.05 99.05

*100% identity against reference sequence.
doi:10.1371/journal.pone.0065226.t001
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another by their bacterial composition (Figure 3C, Figure S3,
Figure S4), including a Pseudomonas–dominant group (II), a

Staphylococcus and Streptococcus-dominant group (IV), and three

distinct, but more heterogeneous groups, composed mostly of

Streptococcus and Prevotella (I), Streptococcus and Pseudomonas (III), or

Pseudomonas with Prevotella and Streptococcus (V).

Discussion

Next-generation sequencing technologies have gained increas-

ing attention in the field of clinical microbiology [10,49]. The

capability to inexpensively interrogate the full genomes of clinical

pathogens holds promise of a transformative effect, offering insight

into the molecular biology, molecular epidemiology, and evolution

of bacteria that conventional biochemical and morphological

classification techniques are incapable of providing. Yet, compre-

hensive genomic analysis of microbes remains computationally

challenging and both time and resource intensive, making the

approach prohibitive in the routine clinical environment. Targeted

massively parallel sequencing of the 16S rRNA gene is more

tractable: limited genotypic information is provided, but allows for

phylotypic classification of bacterial species [15]. Deep sequencing

of 16S rRNA has already been used numerous times in

metagenomic surveys to catalog the taxonomic composition of

normal human microbiota [1,15], and to explore how resident

bacterial communities change during various disease states [10].

Regardless, even such targeted genomic sequencing strategies

impose practical limitations related to cost, turn-around time, and

analytic complexity, precluding their clinical use thus far.

Building upon metagenomic research strategies and existing

clinical methods for molecular bacterial characterization, we

developed an approach for classifying the species present in

clinical samples containing complex bacterial communities using

deep sequencing. Semiconductor next-generation sequencing (Ion

Torrent) offers rapid chemistries that make it amenable for

adaptation as a clinical diagnostic tool, so was selected as the

sequencing platform in this study. Subsequent improvements to

the workflow with commercial release of Ion Torrent 400 bp

sequencing kits have made the assay described theoretically

compatible with same day turnaround times (library preparation,

4 hours; automated emulsion PCR, 8 hours; sequencing time,

4 hours; computational analysis time, scalable), potentially allow-

ing for results to be returned faster than can be achieved by

culture. In conjunction, multiplexing specimens through DNA

barcoding allows significantly reduced per-sample costs [50]: in

this study up to 16 samples were run in parallel on a single chip for

approximate reagent costs of ,$60 USD per sample.

We found that sequencing errors for the assay (integrating

library construction and sequencing) are largely secondary to

artifacts involving indels, a well-known limitation of semiconduc-

tor sequencing, and are similar to published error rates for Ion

Torrent [34–36] (Figure 1B). We developed a platform-

independent de-noising pipeline that significantly improves overall

data quality (Figure 1B and 1C) to the point that de-noised

sequences from mixed clinical specimens frequently align with

100% identity against bacterial reference sequences (Dataset S1),

providing the level of accuracy necessary for clinical diagnosis. It

should be possible to further decrease errors among de-noised

reads by selecting only clusters containing large numbers of reads,

but at the expense of decreasing sensitivity secondary to excluding

rare sequences.

Table 2. CF Pathogens identified by Microbiological Culture and Deep Sequencing.

Organism Culture Only
Culture and Deep
Sequencing

Deep Sequencing
Only Total Cases

Achromobacter xylosoxidans 4 1 5

Burkholderia cepacia complex 1 1

Chryseobacterium species 1 1

Enterobacter cloacae 1 1

Haemophilus influenzae 1 4 5

Klebsiella species 2* 2

Moraxella catarrhalis 1 1

Moraxella nonliquefaciens 1 1 2

Mycobacterium abscessus 1 1

Mycobacterium avium 1 1

Pseudomonas aeruginosa 2 36 8 46

Pseudomonas flourescens group 1 1

Pseudomonas putida group 2 2

Serratia marcescens 2 1 3

Staphylococcus aureus 8 20 4 32

Stenotrophomonas maltophilia 3 5 10 18

Streptococcus agalactiae 1 3 4

Streptococcus pneumoniae 1 { 1

All Organisms 22 (17.3%) 72 (56.7%) 33 (26%) 127 (100%)

*For one case, a single colony of Klebsiella pneumoniae was detected by culture.
{45 patients had consensus sequences with best matches against both Streptococcus pneumoniae (pathogen) and Streptococcus mitis (normal microbiota). Because such
consensus sequences cannot distinguish between these organisms, these instances were not counted.
doi:10.1371/journal.pone.0065226.t002
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PCR-mediated deep sequencing library preparation allows

highly-purified libraries to be quickly generated from trace

quantities of bacterial DNA, in contrast to shotgun sequencing

approaches which are less efficient and nonspecifically produce

sequence data from the human host [1]. However, PCR results in

amplification bias in heterogeneous mixtures due to differences in

genomic sequence at primer sites, 16S rRNA copy number, and

GC content, such that read counts correlate semi-quantitatively

with the relative abundance of bacterial species [43,51,52].

However, we observed that it is possible to detect rare bacterial

sequences (less than 1%) within complex mixtures of DNA even

with a relatively low number of subsampled sequence reads

(Figure 2). Greater levels of sensitivity are expected if the number

of reads dedicated to a specimen is increased.

As an applied proof-of-principle we have explored the

composition of challenging clinical specimens, demonstrating key

advantages of molecular microbiology diagnosis by next-genera-

tion sequencing. Deep sequencing proved most useful in providing

actionable information about the microbial composition of brain

abscess material, whereas both Sanger sequencing and standard

culture failed to provide a result. Similarly, deep sequencing

cataloged a number of bacterial species from a biopsy which were

not resolvable by Sanger sequencing, and which was clinically

reported as infection with a single organism.

In addition to materials where bacteria cannot be effectively

cultured or sequenced by the Sanger method, we also explored the

utility of deep sequencing using a collection of CF sputa that were

simultaneously characterized using standard clinical practice

microbiology culture (Dataset S1). As expected [47,53,54],

greater numbers of species-level classifications were obtained by

deep sequencing (122 species) than culture (18 species), including

fastidious organisms expected to be unrecoverable by routine

methods (Figure 3C). With respect to detecting specific CF

pathogens [55], culture and deep sequencing results agreed in

most cases, yet a number of pathogens were detected by deep

sequencing in patient specimens deemed to be culture-negative

using standard workup (Table 1). The limited sensitivity of

diagnostic culture when compared to molecular methods, in

general, has previously been described for CF pathogens [56,57].

Even so, 22 of the 127 total pathogens identified were recovered

only by culture. S. aureus was the organism most frequently missed

by deep sequencing, consistent with earlier reports using

quantitative real-time PCR [58]. In several cases small numbers

of reads were detectable representing the missed pathogen,

suggesting that increased read counts would have been sufficient

to allow their reliable identification by deep sequencing. Other

discrepancies may reflect inefficient DNA extraction from

particular organisms, primer bias [43] or properties of the

specimens themselves [58], including internal sample heterogene-

ity. Failures in this study could potentially be addressed by such

measures as increasing read depth, optimization of primer design

to include additional degenerate sites [59], and controlling pre-

analytical variables including sample processing, storage, and

DNA extraction [60].

Further optimization will be required before deep sequencing is

suitable as a stand-alone diagnostic for CF sputa. Regardless, even

currently deep sequencing detected specific CF pathogens from a

greater number of patient specimens than culture, indicating

utility as an adjunct identification technique. Moreover, members

of the Streptococcus milleri group (S. anginosus, constellatus and

intermedius), CF pathogens that are not resolved by routine clinical

culture [47], were confidently classified by deep sequencing in 25

patient samples (Dataset S1). Thus, the true number of CF

pathogens diagnosable by deep sequencing is greater than

reported with respect to the limited panel of organisms surveyed

by culture.

It may prove more informative to evaluate the overall microbial

population in a patient’s airway rather than to screen for specific

pathogens [45,61]. We therefore compared the microbiota of 66

CF sputa, demonstrating for the first time the feasibility of rapid

metagenomic classification as a clinical diagnostic. We found that

CF samples in this study can largely be divided into five major

groups based only on similarities in their microbial composition

(Figure 3, Figure S3, Figure S4), which are not apparent based

on conventional culture results. This finding suggests that a diverse

CF patient population can be binned into a limited number of

categories given the makeup of their respiratory microbiota. Two

of the groups (II and IV) have relatively low diversity and are

dominated by combinations of Staphylococcus, Streptococcus, and

Pseudomonas; all well-described colonizers of the airway of CF

patients. Groups I, III, and V are more diverse. Groups I and V

each contain a substantial fraction of obligate anaerobes including

Prevotella, Veillonella, and Porphyromonas species. Anaerobic organ-

isms have been noted in CF sputa in a number of studies [62,63],

although their clinical significance is uncertain. In contrast, group

III has a smaller representation of anaerobes. Whether the

presence or absence of particular metagenomic profiles will

correspond meaningfully with clinical correlates remains to be

seen, but the finding opens exciting possibilities for a future

paradigm shift in clinical microbiology from the identification of

single organisms to diagnoses based on the overall population

content of a sample [64]. Additional studies will be required to

reproduce and provide statistical support for these groups.

There are several additional considerations to the use of 16S

rRNA deep sequencing in the clinical laboratory. First, although

de-noising strategies have proven valuable, their use prevents

discrimination among closely related strains. Because de-noising

functions by clustering similar reads that are assumed to derive

from the same template molecule, sufficiently similar sequences

may be integrated into a single consensus. Therefore, although our

approach can accurately and sensitively ‘‘rule in’’ bacteria whose

sequences closely match those in a database of known 16S rRNA

genes, it currently does not allow certain bacterial species to be

‘‘ruled out’’ from clinical specimens in cases where a closely related

Figure 3. Metagenomic content and phylogenetic clustering of 66 CF sputa samples. Taxonomic names (family, genus, species, or a
combination of species where appropriate) appearing with a relative abundance of at least 15% of denoised reads in one or more specimens are
indicated in the legend. Any taxonomic name that failed to meet this threshold was assigned the label ‘‘Other’’. Organisms considered to be
components of normal oropharyngeal microbiota by culture were not further speciated according to standard procedures in the clinical laboratory,
and were assigned the general label ‘‘Contaminating orophoryngeal flora’’. Taxonomic labels apply to parts B and C. (A) Phylogenetic ‘‘squash’’
clustering of CF bacterial composition. Samples are color-coded according to group (indicated in Roman numerals). Samples colored grey are
ungrouped. (B) Classification performed by analysis of de-noised deep sequencing reads using pplacer (top panel) and culture (bottom panel). The
relative number of each species (by read count or colony abundance, respectively) is represented by the height of corresponding bars. Phylogenetic
‘‘squash’’ clustering of specimens from deep sequence data is represented as a cladogram, with specimens colored as in part A. (C) Consensus
microbiota profile of phylogenetic groups, averaged from all members of the group. Relative abundance of species, as estimated by the fraction of
contributory reads, is indicated.
doi:10.1371/journal.pone.0065226.g003
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species is also detected. We expect that future improvements in

PCR enzyme cocktails, sequencing chemistries, and primary base-

calling algorithms will reduce rates of raw sequencing error on this

platform, decreasing reliance on de-noising algorithms and

improving the resolution of the assay. More sophisticated de-

noising algorithms incorporating error models specific to semi-

conductor sequencing may also prove beneficial [21,22,38].

Secondly, our method relies on classifying experimental sequences

against a defined set of 16S rRNA references, which greatly limits

the potential for spurious classification due to sequencing errors

[65,66] but also makes the discovery of previously un-described

organisms more challenging. Further, although the assay is able to

detect low prevalence bacteria in multi-component specimens with

previously unachievable sensitivity, this property also presents

challenges. In many cases the presence of particular minor

bacterial species might have unclear diagnostic implications,

especially if the organism is a pathogen at the limits of detection,

and additional studies will be needed to explore the significance of

such findings. From a practical standpoint, extreme sensitivity also

makes the approach susceptible to contaminating DNA and

special care must be employed to avoid this, along with inclusion

of appropriate extraction and non-template controls. We should

note that the pilot experiments described in this study were

performed in the absence of fully realized environmental controls

that we expect would be in place for a clinically-validated assay to

minimize the risk of specimen cross-contamination. Lastly, in some

situations only genus or multiple species-level classifications can be

assigned due to insufficient discriminatory information the 16S

rRNA gene V1–V2 regions. As read lengths offered by semicon-

ductor sequencing increase, it may be possible to interrogate more

of the 16S rRNA gene in the future.

Despite these caveats, deep sequencing demonstrates the

potential for immediate utility in several clinical applications

exemplified by this study, namely, characterizing mixed infections

from specimens containing non-viable or unculturable organisms,

such as brain abscesses or fixed tissues, and detecting specific

bacterial pathogens from complex specimens when a defined list of

species are of interest, such as CF sputa [58]. Further work will be

required to more fully catalog the range of bacteria detectable in

various disease states and to correlate the presence of particular

agents with patient outcomes before deep sequencing can fully

inform patient care as a general molecular diagnostic, independent

of the clinical indication.
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