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The ‘‘star paradox’’ in phylogenetics is the tendency for a particular resolved tree to be sometimes strongly supported even
when the data is generated by an unresolved (‘‘star’’) tree. There have been contrary claims as to whether this phenomenon
persists when very long sequences are considered. This note settles one aspect of this debate by proving mathematically
that the chance that a resolved tree could be strongly supported stays above some strictly positive number, even as the
length of the sequences becomes very large.

Introduction

Two recent papers (Yang and Rannala 2005; Lewis
et al. 2005) highlighted a phenomenon that occurs when
sequences evolve on a tree that contains a polytomy—in
particular a 3-taxon unresolved rooted tree. As longer
sequences are analyzed using a Bayesian approach, the pos-
terior probability of the trees that give the different resolu-
tions of the polytomy do not converge on relatively equal
probabilities—rather a given resolution can sometimes have
a posterior probability close to one. This has been called the
‘‘star paradox’’ because the data evolved on an unresolved
tree, and thus a high posterior for a particular resolved tree
must be artifactual. In response Kolaczkowski and Thornton
(2006) investigated this phenomenon further, providing
some interesting simulation results and offering an argu-
ment that seems to suggest that for very long sequences
the tendency to sometimes infer strongly supported resolu-
tions suggested by the earlier papers would disappear with
sufficiently long sequences. As part of their case, the authors
use the expected site frequency patterns to simulate the case
of infinite length sequences, concluding that ‘‘with infinite
length data, posterior probabilities give equal support for all
resolved trees, and the rate of false inferences falls to zero.’’
Of course these findings concern sequences that are effec-
tively infinite, and, as is well known in statistics, the limit of
a function of random variables (in this case site pattern fre-
quencies for the first n sites) does not necessarily equate with
the function of the limit of the random variables. Accord-
ingly Kolaczkowski and Thornton offer this appropriate
cautionary qualification of their findings:

‘‘Analysis of ideal data sets does not indicate what will
happen when very large data sets with some stochastic error
are analyzed, but it does show that when infinite data are
generated on a star tree, posterior probabilities are predict-
able, equally supporting each possible resolved tree.’’

Yang and Rannala (2005) had attempted to simulate
the large sample posterior distribution but ran into numer-
ical problems and commented that it was ‘‘unclear’’ what
the limiting distribution on posterior probabilities was as
n became large.

In particular, all of the aforementioned papers have left
open an interesting statistical question, which this short note

formally answers—namely, does the Bayesian posterior
probability of the 3 resolutions of a star tree on 3 taxa con-
verge to 1/3 as the sequence length tends to infinity? That is,
does the distribution on posterior probabilities for ‘‘very
long sequences’’ converge on the distribution for infinite
length sequences? We show that for most reasonable priors
it does not. Thus the star paradox does not disappear as the
sequences get longer.

As noted by Yang and Rannala (2005) and Lewis et al.
(2005), one can demonstrate such phenomena more easily
for related simpler processes such as coin tossing (particu-
larly if one imposes a particular prior). Here, we avoid this
simplification as such results do not rigorously establish
corresponding phenomena in the phylogenetic setting,
which in contrast to coin tossing involves considering a pa-
rameter space of dimension greater than 1 (moreover, as we
will see there is a complication that arises in the phyloge-
netic problem that is entirely absent from the coin-tossing
problem). We also frame our main result so that it applies to
a fairly general class of priors. Whether or not the star par-
adox is a practical concern for biologists is likely to depend
heavily on the data, the priors, and the methods used to es-
tablish Bayesian posterior probabilities. The purpose of this
paper is merely to indicate that from a mathematical per-
spective there is no reason to think that the star paradox will
automatically vanish given long enough sequences. Some
further comments and earlier references on the phenome-
non have been described in the recent review paper by
Alfaro and Holder (2006, p. 35–36).

Analysis of the Star Tree Paradox for 3 Taxa

On tree T1 (in fig. 1), let pi 5 pi(t0, t1), i 5 0, 1, 2, 3,
denote the probabilities of the 4 site patterns (xxx, xxy, yxx,
xyx, respectively) under the simple 2-state symmetric
Markov process (the argument extends to more general
models, but it suffices to demonstrate the phenomena for this
simple model). From equation (2) of Yang and Rannala
(2005) we have

p0ðt0; t1Þ5
1

4
ð11 e

�4t1 1 2e
�4ðt01t1ÞÞ;

p1ðt0; t1Þ5
1

4
ð11 e

�4t1 � 2e
�4ðt01t1ÞÞ;

and

p2ðt0; t1Þ5 p3ðt0; t1Þ5
1

4
ð1 � e

�4t1Þ:

It follows by elementary algebra that for i 5 2, 3,
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p1ðt0; t1Þ
piðt0; t1Þ

� 11 2e
�4t1ð1 � e

�4t0Þ; ð1Þ

and thus p1(t0, t1) � pi(t0, t1) with strict inequality unless
t0 5 0 (or in the limit as t1 tends to infinity).

To allow maximal generality, we make only minimal
assumptions about the prior distribution on trees and branch
lengths. Namely, we assume that the 3 resolved trees on 3
leaves (trees T1, T2, T3 in fig. 1) have equal prior probability
1
3

and that the prior distribution on branch lengths t0, t1 is the
same for each tree with a smooth joint probability density
function that is bounded and everywhere nonzero. This
condition applies, for example, to the exponential prior dis-
cussed by Yang and Rannala (2005). Any prior that satisfies
these properties we call ‘‘tame.’’

Let n 5 (n0, n1, n2, n3) be the counts of the different
types of site patterns (corresponding to the same patterns
as for the Pi’s). Thus n5

P3
i50 ni is the total number of sites

(i.e., the length of the sequences). Given a prior distribution
on (t0, t1) for the branch lengths of Ti (for i 5 1, 2, 3) let
P½Tijn� be the posterior probability of tree Ti given the site
pattern counts n. Now suppose the n sites are generated on
a star tree T0 with positive branch lengths. We are interested
in whether the posterior probability P½Tijn� could be close to
1 or whether the chance of generating data with this property
goes to zero as the sequence length gets very large. We show
that in fact the latter possibility is ruled out by our main re-
sult, namely, the following:

Theorem 2.1

Consider sequences of length n generated by a star tree
T0 on 3 taxa with strictly positive edge length t01 and let n be
the resulting data (in terms of site pattern counts). Consider
any prior on the 3 resolved trees (T1, T2, T3) and their branch
lengths that is tame (as defined above). For any e.0; and
each resolved tree Ti (i5 1, 2, 3), the probability that n has
the property that

PðTijnÞ.1 � e

does not converge to 0 as n tends to infinity.

Proof of Theorem 2.1

Because of the considerable details involved in the
proof, we present a brief, intuitive outline of the argument.

Firstly, we will show that the probability that a star tree
generates a ‘‘moderate’’ excess of site patterns favoring any
1 of the 3 resolved trees stays bounded above zero as n (the
sequence length) goes to infinity. Here, by moderate we
mean that the excess is in the order of the square root of

n (the standard deviation for site pattern counts). Condition-
ing on this event (and some related moderate events, col-
lectively called Fc below), we would like to show that
a given tree T has unusually high posterior probability
for this data; this can be simplified to showing that the ratio
of the posterior probability of the given resolved tree to ei-
ther of the other 2 resolved trees is large. These ratios can in
turn be conveniently expressed as a ratio of expectations of
2 closely related random variables (X, Y—eq. 4). A crucial
observation (based on symmetry considerations) is that X
and Y are random variables determined just by T and the
prior on its branch lengths (t0, t1)—that is, we have reduced
a problem involving 3 resolved trees and their branch length
priors to an analysis of 2 quantities involving a single re-
solved tree and its branch length prior. To analyze the ratio
of expectations (in the hope of showing it is large), it helps
to focus on the distribution of the random variables (P0, P1)
induced by the prior on (t0, t1) (later it is helpful to consider
a further derived pair of random variables (P0, Z)). We do
not need to calculate these distributions explicitly; indeed,
working over the general class of priors is curiously helpful
here, as it avoids the temptation to get bogged down in the
detailed analysis of a particular distribution.

Considering the ratio of conditional expectations
according to a distribution on (P0,P1) leads to a second help-
ful observation: if we condition on P0 taking a particular
value, say p0, then p0 cancels out of the ratio (eq. 13), reduc-
ing what began as a 2-dimensional problem to a family of
1-dimensional computations. At this point a complication
arises that requires some care to resolve (and which does
not arise in the much simpler [fair] coin-tossing problem).
Namely, the ratio of conditional probabilities is not always
large (e.g., if P0 is conditioned to equal a value that ap-
proaches 1

4
; which corresponds to long branches [site satu-

ration], then all 3 resolved trees have approximately the
same posterior probability for any data). Nevertheless, we
are assuming that the data is generated by a star tree with
finite nonzero branch lengths and so the probability q0 of
the unvaried pattern (xxx) is a fixed number strictly between
1
4

and 1. If P0 were to differ from q0 too much then (for long
sequences that satisfy the moderate events mentioned above)
the posterior probability of any resolved tree conditional on
such an extreme P0 value would be small, compared with
a conditioned value of P0 close to q0—this is, informally,
what Claim (i) in the proof below says. Moreover, if P0 is
conditioned to equal a value close to q0, then the ratio of
conditional expectations can be shown to be large. This is
essentially Claim (ii) in the proof below. These 2 claims
can be combined by Lemma 2.2 to handle the complication
described, and thereby, establish what we required, namely,
that the ratio of (unconditional) expectations is large.

We now proceed to the formal details—the proofs of
Claims (i) and (ii) and Lemma 2.2 are deferred to the
Appendix.

Consider the star treeT0 with given branch lengths t01 (as
in fig. 1). Let (q0, q1, q2, q3) denote the probability of the 2
types of site patterns generated by T0 with these branch
lengths. Note thatq15q25q3 and soq051�3q1). Suppose
we generate n sites on this tree, and let n0, n1, n2, n3 be the
counts of the different types of site patterns (corresponding to
the pi’s). Let D0 : 5ðn0 � q0nÞ=

ffiffiffi
n

p
and for i 5 1, 2, 3, let

FIG. 1.—The 3 resolved rooted phylogenetic trees on 3 taxa T1, T2, T3,
and the unresolved �star� tree on which the sequences are generated T0.
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Di : 5
ni � 1

3
ðn� n0Þffiffiffi
n

p :

For a constant c . 1, let Fc denote the event:

Fc : D2;D3 2 ½�2c;�c� and D0 2 ½�c; c�:

Notice that Fc implies D1 2 ½2c; 4c� because D1 1 D2 1
D3 5 0. By standard stochastic arguments (based on the
asymptotic approximation of the multinomial distribution
by the multinormal distribution) event Fc has probability
at least some value d#5 d#(c) . 0 for all n sufficiently large
(relative to c).

Given the data n 5 (n0, n1, n2, n3) write
Pðn0; n1; n2; n3jTi; t0; t1Þ for the probability of n assuming
the data was generated on tree Ti with branch lengths t0, t1.
The assumption of equality of priors across T1, T2, and T3

implies that

Pðn0; n1; n2; n3jT2; t0; t1Þ5Pðn0; n2; n3; n1jT1; t0; t1Þ; ð2Þ
and

Pðn0; n1; n2; n3jT3; t0; t1Þ5Pðn0; n3; n1; n2jT1; t0; t1Þ: ð3Þ

Now, as (t0, t1) are random variables with some prior
density, when we view p0, p1, p2, p3 as random variables by
virtue of their dependence on (t0, t1), we will write them as
P0, P1, P2, P3 (note that Yang and Rannala [2005] use Pi

differently). With this notation, the posterior probability of
T1 conditional on n can be written as

PðT1jnÞ5 pðnÞ�1
3 E1½Pn0

0 P
n1

1 P
n2

2 P
n3

3 �;

where p(n) is the posterior probability of n (assuming that
data is generated on one of the resolved trees chosen with
equal probability) and E1 denotes expectation with respect
to the prior for t0, t1 on T1. Moreover, because P2 5 P3, we
can write this as PðT1jnÞ5pðnÞ�1

3E1½Pn0

0 Pn1

1 Pn21n3

2 �: By
equation (2) and equation (3), we have

PðT2jnÞ5 pðnÞ�1
3 E1½Pn0

0 P
n2

1 P
n11n3

2 � and

PðT3jnÞ5 pðnÞ�1
3 E1½Pn0

0 P
n3

1 P
n11n2

2 �;

where again expectation is taken with respect to the prior for
t0, t1 on T1. Consequently,

PðT1jnÞ
PðT2jnÞ

5
E1½X�
E1½Y�

; ð4Þ

where

X5P
n0

0 P
n1

1 P
n21n3

2 and Y5P
n0

0 P
n2

1 P
n11n3

2 :

As will be shown later, it suffices to demonstrate that the
ratio in equation (4) can be large with nonvanishing prob-
ability in order to obtain the conclusion of the theorem. In
order to do so, we use the following lemma, whose proof is
provided in the Appendix.

Lemma 2.2

Let X, Y be nonnegative continuous random variables,
dependent on a third random variable K that takes values in

an interval I 5 [a, b]. Suppose that for some interval I0
strictly inside I, and I15 I– I0 the following inequality holds:

E½YjK 2 I0� � E½YjK 2 I1� ð5Þ
and that for some constant B . 0, and all k 2 I0,

E½XjK5 k�
E½YjK5 k� � B: ð6Þ

Then,
E½X�
E½Y� � B3PðK 2 I0Þ:

To apply this lemma, select a value s . 0 so that
1
4
1s,q0,1 � s; and let I0 5 [q0 � s, q0 1 s]. Then let
I5½1

4
; 1� and I15I � I05 ½1

4
; q0 � sÞ [ ðq01s; 1�:

Claim:

Let c. 1. Then conditional on the data n5 (n0, n1, n2,
n3) satisfying Fc, and for n sufficiently large, the following
two inequalities hold:

(i) E1½YjP0 2 I0� � E1½YjP0 2 I1�
(ii) For all p0 2 I0; E1½XjP05p0�=E1½YjP05p0� � 6c2:

The proofs of these claims are given in the Appendix.
To apply these claims, select c.1=ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ePðP0 2 I0Þ

p
Þ

(this is finite by the assumption that the prior on (t0, t1) is
smooth and everywhere nonzero). Then, 6c23
PðP0 2 I0Þ.2

e
:

Combining Lemma 2.2 with Claims (i) and (ii) for this
value of c we deduce that conditional on n satisfying Fc and
for n sufficiently large,

E1½X�
E1½Y�

� 6c2
3 PðP0 2 I0Þ .

2

e
: ð7Þ

As stated before, the probability that n satisfies Fc is at least

d#5 d#(c) . 0 for n sufficiently large, and so, by equation

(4) and equation (7), we have
PðT1jnÞ
PðT2jnÞ5

E1½X�
E1½Y�.

2
e
: Similarly,

PðT1jnÞ
PðT3jnÞ.

2
e
: Now, because PðT1jnÞ1PðT2jnÞ1PðT3jnÞ51 it

follows that, for n sufficiently large, and conditional an
event of probability at least d# . 0, that PðT1jnÞ.1 � e
as claimed. This completes the proof. h

Concluding Remarks

One feature of the argument we have provided is that it
does not require stipulating in advance a particular prior on
the branch lengths—that is, the result is somewhat generic
as it imposes relatively few conditions. Moreover, it seems
possible to weaken these even further. For example, the re-
quirement that the prior on (t0, t1) be everywhere nonzero
could be weakened to simply being nonzero in a neighbor-
hood of (0, t01) (thereby allowing, e.g., a uniform distribu-
tion on bounded range).

An interesting open question in the spirit of this paper is
to explicitly calculate the limit of the posterior density f(P1,
P2,P3) described in (Yang and Rannala 2005). It may also be
of interest to study posterior support for resolved trees when
one weakens the molecular clock assumption on the star tree
that generates the data. For example, one could imagine
combinations of (non-clocklike) branch lengths that may
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lead to more frequent and/or stronger support for particular
resolved trees.

Appendix: Proof of Lemma 2.2 and Claims (i) and (ii)
Proof of Lemma 2.2:

For W 5 X, Y we have

E½W�5E½WjK 2 I0�PðK 2 I0Þ1E½WjK 2 I1�PðK 2 I1Þ:
ð8Þ

In particular, for W 5 X we have: E½X� � E½XjK 2 I0�
PðK 2 I0Þ: Note that equation (6) implies that E½XjK 2
I0� � B3E½YjK 2 I0�; so

E½X� � B 3 E½YjK 2 I0�PðK 2 I0Þ: ð9Þ
Taking W 5 Y in equation (8) and applying equation (5)
gives us

E½Y� � E½YjK 2 I0�ðPðK 2 I0Þ1PðK 2 I1ÞÞ5E½YjK 2 I0�;
which combined with equation (9) gives the result. h

Proof of Claim (i), E1½YjP0 2 I0� � E1½YjP0 2 I1� :
We will first bound E1½YjP0 2 I1� above. Let

lðnÞ5ðqq0

0 qq1

1 qq2

2 qq3

3 Þn: Now, conditional on n satisfying
Fc we have

n
�1

logðlðnÞ=Yðt0; t1ÞÞ5 dKLðq; pÞ1 oð1Þ; ð10Þ
where p 5 (p0, p1, p2, p3) and q 5 (q0, q1, q2, q3),
and dKL denotes Kullback–Leibler distance. Now,
dKLðq; pÞ � 1

2
kq� pk2

1 � 1
2
jq0 � p0j2 (the first inequality

is a standard one in probability theory). In particular, if
p0 2 I1; then jq0 � p0j.s.0: Moreover,

E1½YjP0 2 I1� � maxfYðt0; t1Þ : p0ðt0; t1Þ 2 I1g:

The right hand side can then be bounded above by rear-
ranging equation (10) and using the lower bound on the
Kullback–Leibler distance, giving

E1½YjP0 2 I1� � maxfYðt0; t1Þ : p0ðt0; t1Þ 2 I1g

, lðnÞe�1
2
s
2
n1oðnÞ

: ð11Þ
In the reverse direction, we have

E1½YjP0 2 I0� � AðnÞBðnÞ;
where

AðnÞ5minfYðt0; t1Þ : ðt0; t1Þ 2 ½0; n�1�3½t01; t
0

1 1 n
�1�g

and

BðnÞ5Pððt0; t1Þ 2 ½0; n�1�3½t01; t
0

1 1 n
�1�Þ:

Now,

AðnÞ=lðnÞ5 p
q0

0 p
q1

1 p
2q1

2

q
q0

0 q
3q1

1

� �n

3 p
D0

0 p
D2�1

3
D0

1 p
D11D3�2

3
D0

2

� � ffiffi
n

p

ð12Þ

for (p0, p1, p2) determined by some ðt0; t1Þ 2 ½0; n�1�3
½t01; t011n�1�: Now, the first term of the product in equation
(12) converges to a constant as n grows (because p0 � q0, p1

� q1, and p2 � q1 are each of order n�1), whereas the con-
dition Fc ensures that the second term decays no faster than
e�C1

ffiffi
n

p
for a constant C1. Thus, AðnÞ � C2lðnÞe�C1

ffiffi
n

p
for

a positive constant C2. The term B(n) is asymptotically pro-
portional to n�2. Summarizing, for a constant C3 . 0 (de-
pendent just on t01)

E1½YjP0 2 I0� � C3lðnÞn�2
e
�C1

ffiffi
n

p
;

which combined with equation (11) establishes Claim (i)
for n sufficiently large. h

In order to prove Claim (ii), we need some preliminary
results.

Lemma 3.1

Let g , 1. Then for each x . 0 there exists a value
K 5 K(x) , N that depends continuously on x so that
the following holds. For any continuous random vari-
able Z on [0, 1] with a smooth density function f that
satisfies f(1) 6¼ 0 and jf#(z)j , B for all z 2 (g, 1], we
have

k 3
ðE½Zk� � E½Zk11�Þ

E½Zk�
� 1

2

for all k � Kð B
f ð1ÞÞ:

Proof.

Let tk51 � 1ffiffi
k

p : Then,

E½Zk�5
Z tk

0

tkf ðtÞdt1
Z 1

tk

tkf ðtÞdt:

Now,

0 �
Z tk

0

t
k
f ðtÞdt � t

k

k;e
�
ffiffi
k

p
�1=2

;

where ; denotes asymptotic equivalence (i.e., f (k); g(k) if
limk/Nf ðkÞ=gðkÞ51Þ: Using integration by parts,

Z 1

tk

t
k
f ðtÞdt5 1

k1 1
t
k11

f ðtÞ
����

1

tk

� 1

k1 1

Z 1

tk

t
k11

f #ðtÞdt:

Now, provided k . (1 � g)�2, we have tk . g and so
the absolute value of the second term on the right is at
most B

k11

R 1

tk
tk11dt 5 B

ðk11Þðk12Þð1 � tk12
k Þ: Consequently,

jE½Zk�� ðf ð1Þ=k11Þj is bounded above by B times a
term of order k�2. A similar argument, again using

integration by parts, shows that jkðE½Zk� � E½Zk11�Þ
�ðf ð1Þ=k11Þj is bounded above by B times a term
of order k�2, and the lemma now follows by some rou-
tine analysis. h
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Lemma 3.2

Let y5 (1 1 2x)(1 – x)2. Then, for x 2 [0, 1) and m� 3
we have

11 2x

1 � x

� �m

� m
2ð1 � yÞ:

Proof.

11 2x

1 � x

� �m

5 11
3x

1 � x

� �m

� mðm� 1Þ
2

3x

1 � x

� �2

� 9mðm� 1Þx2

2
;

and m2ð1 � yÞ5m2ð3x2 � 2x3Þ � 3m2x2; and for m � 3

this upper bound is less or equal to the lower bound in
the previous expression. h

Proof of Claim (ii), for all p0 2 I0, E1½XjP05p0�=
E1½YjP05p0� � 6c2 :

Write E1½Wjp0� as shorthand for E½WjP05p0�: Note
that, for any r, s . 0, E1½Pn0

0 Pr
1P

s
2jp0�5pn0

0 E1½Pr
1P

s
2jp0�:

Consequently, if we let k5kðnÞ51
3
ðn� n0Þ then, by defini-

tion of the Di’s,

E1½Xjp0�
E1½Yjp0�

5
E1½ðP1P

2

2Þ
k
3ðPD1

1 P
D21D3

2 Þ
ffiffi
n

p
jp0�

E1½ðP1P
2

2Þ
k
3ðPD2

1 P
D11D3

2 Þ
ffiffi
n

p
jp0�

: ð13Þ

Now, conditional on n satisfying Fc (and because P1 �
P2) the following 2 inequalities hold (recalling that D1 1
D2 1 D3 5 0),

P
D1

1 P
D21D3

2 5
P1

P2

� �D1

� P1

P2

� �2c

and

P
D2

1 P
D11D3

2 5
P1

P2

� �D2

� 1:

Applying this to equation (13) gives:

E1½Xjp0�
E1½Yjp0�

�
E1 ðP1P

2

2Þ
k
3 P1

P2

� �2c
ffiffi
n

p ����p0

� �

E1½ðP1P
2

2Þ
kjp0�

: ð14Þ

Let U5ðP1 � P2Þ=ð1 � P0Þ; which takes values
between 0 and 1 because P1 � P2. Because
P1 1 2P2 5 1 � P0, we can write
P1 5 1

3
ð112UÞð1 � P0Þ and P2 5 1

3
ð1 � UÞð1 � P0Þ:

Thus, P1P
2
2 5 1

27
ð112UÞð1 � UÞ2 ð1 � P0Þ3

and
P1

P2
5112U

1�U : Substituting these into equation (14), letting

Z 5 (1 1 2U)(1 � U)2 and noting that
ffiffiffi
n

p
�

ffiffiffiffiffi
3k

p
gives

E1½Xjp0�
E1½Yjp0�

�
E1 Z

k
3ð11 2U

1�U
Þ2c

ffiffiffi
3k

p ����p0

� �

E1½Zkjp0�
:

Thus, by Lemma 3.2, (taking x5U; y5Z;m52c
ffiffiffiffiffi
3k

p
) we

obtain, for m � 3,

E1½Xjp0�
E1½Yjp0�

� 12c
2
k 3

ðE1½Zkjp0� � E1½Zk1 1jp0�Þ
E1½Zkjp0�

: ð15Þ

The mapping ðt0; t1Þ1ðP0; ZÞ is a smooth invertible map-
ping between (0, N)2 and its image within ð1

4
; 1Þ3ð0; 1Þ:

Notice that Z becomes concentrated about 1 whenever
P0 approaches 1

4
: However, for p0 in the interval I0 the

conditional density f(ZjP0 5 p0) is smooth, bounded
away from 0, and its first derivative is also uniformly
bounded above over this interval. Consequently, we
may apply Lemma 3.1 (noting that the condition that
n satisfies Fc ensures that kðnÞ � 1

4
n� oðnÞÞ to show that

for n sufficiently large the following inequality holds for
all p0 2 I0,

k 3
ðE1½Zkjp0� � E1½Zk11jp0�Þ

E1½Zkjp0�
� 1

2
:

Applying this to equation (15) gives E1½Xjp0�=E1½Yjp0� �
6c2 as claimed. This completes the proof of Claim (ii).
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